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1. Introduction 

Design problem (DP) has a stable reputation of ill-structured [Simon 1970] or even wicked 
[Rittel 1973]. At the same time, absent adequate realization of DP retains unclear the design 
process (DPR) itself. The multiple conjectural models of DPR merely promote its 
disintegration. In turn, the lack of DPR-oriented knowledge entails inarticulateness of design 
automation, inefficient and non-technological utilization of design methods and knowledge,  
vague ways to counteract DPR complexity growth, chaotic picture of design related research. 

All of this causes the feeling of "the end of design methodologies" [Nauman 2004]. 

On the other hand, absent DP realization leaves doubtful the outlines and power of Design 
Science, disabling it to field many questions induced by design theory and practice. Thus, the 
appeal to engineering Design Science consolidation [Birkhofer 2006], as well as the claim  
"designing is a discipline in its own right" [Andreasen 2001], have an ambiguous effect: the 
both of items cause no doubts to be raised but evidently swap the events, leaving the cart 
before the horse (there is neither the mater to consolidate nor separate discipline yet).  

More concisely, the lack of adequate DP realization has turned into dam that, in our view, 
hinders both Design Science progress and design practice enhancement. In this paper, we 
propose a way of DP quasi-realization and consider its outcomes.  

2. The glimpse into continuous process theory – a formal tool at hand 

Process scheme: a process (PR) representation by the pair (D, P), where D is a procedure to 
produce the process result, and P is a processor intended to perform D: PR=(D, P). A set of 

processes (processes schemes) is added with three relations, coupling any two members of 
the set:  

 providing relation (or p-relation): an output of PR2 serves for the input of PR1 

(PR2
p PR1); 

 relation of determination (d-relation): the output of PR2 is a new state of D PR1 or P PR1 

(PR2
d

PR1); 

 empty or -relation (PR1 and PR2 are mutually independent). 

Non-empty relations are used to make continuous structures out of processes – the n-order 

structures (here n= 3,1 ). For instance, conditional PR1 requires determination of its D and P 

via performance of respective processes: "search for D" (SD) and "search for P" (SP): 

                  SD
d

 PR1
d

 SP                                                                                       (1) 
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PR1 is the core of the structure while SD and SP form the structure's tail. Notation (1) is the 
example of the first order structure (n=1). The structures with n=1 serves for the elements of 
the second order structures. Let us construct one of those. 

In short, any problem statement is "what is needed" (delivered by a virtual PR1) and "what is 
given" (provided by PR2). Following [Polia 1965], we distinguish a "problem solution" 

(determined D PR1 and P PR1) and an "answer to the problem" (an output of PR1 
performance). Then any problem (PrB) can be represented by its scheme when "what is 

needed" has indirect presentation – by a providing process: 

                  PrB1=<<SD, SP>< PR1>>                                                                                    (2) 

                                                p  

                                                   PR2 

The output of PR2 enters the input of PR1. Having restored upon PR2 its problem scheme, we 
obtain the structure out of problem schemes (n=2; PR2 is supposed to be provided; relation 

between structures is the relation between their cores): 

                  PrB1=<<SD, SP>< PR1>>  

                                                                     p 

                    PrB2=<<SD, SP><PR2>> 

Not going into elucidation, make only an example of the structure with n=3 – the so-called 
super- or S-tree (Figure 1). S-tree is an arc-bichromatic tree where each S-node is an 

ordinary tree – the third order structure. 
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Figure 1. The fragment of the third order structure out of processes 

3. Design problem quasi-realization 

Let DP=<<SD, SP><DPR>> be design problem scheme, where DPR is a design process. In 
the general case, DPR input is shaped by needs and requirements. On the one hand, DP is 

insoluble (D DPR does not exist): the needs and requirements cannot be transformed into a 
goal design – the former and the latter are different conceptual worlds [Meijers 2000]. On the 
other hand, DP has the answer (a design). As DP has no solution, we call it quasi- or q-
realizable. 

3.1 What is a conjugate problem for the design problem? 

Thus, there should be another problem actually realized instead DP – call it conjugate with 
respect to DP: CPDP. The latter should be soluble and the answer to it coincides with the 
sought-for answer to DP. There is nothing for it but to find and realize CPDP. (Note that 
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problem realization consists of two steps: problem solving – the performance of processes 
<SD, SP>, and the answer inference – the performance of <PR> or, in case of DP, <DPR>).  

CPDP is obvious from the Axiom 1 [Sedenkov 2008]:  
"Just as a physical product is the outcome of product design 
processing, so a product design has been an outcome of design 
process design  implementation (processing)".  

This axiom defines both the process conjugate to DPR and this process input. We call the 
former meta- or mDPR (because it has concurrently to weaver a priori non-existent DPR and 
to perform it) and the latter – DPR design (3).  

                  CPDP =<<SD, SP><mDPR>>                                                                               (3) 

                                              DPR design 

Due to (2), to determine mDPR, we have first to construct its input – DPR design (Section 

3.3).                                                                                                                                         

3.2 Preliminary discussion on design representation in general 

The objective of design process is to produce a product design via implementation some 
product design progress concept (DPCP). The declared DPCP is "evolution of individual" (in 

contrast to "evolution of population" [Gero 1996]): adaptation of the current design state to a 
new state of a product life cycle environment (LCE). This presupposes evolving (designing) 
of both a product and its LCE (DPCLCE = DPCP ). In other words, we have to deal in the 
course of DP q-realization with the three kinds of designs – for a product, LCE and DPR.  

In the case of that, why do not we construct some generic pre-design – a unified base for 
shaping any design from the triplet?  To be feasible, such a base has to meet the 
precondition – to be domain-, task- and processor-independent (call it 3D independence or, 
for short, 3Di). Besides, our evolutionary DPC implies representation of a pre-design 

dynamics. What should it be (see Section 3.2.2)? Static representation of a design 
(drawings, for instance) is necessary for analysis, modeling, optimization and physical 
embodiment of a design. But those do not fit to design synthesis. 

The starting point for the generic base search gives Axiom 2:  
"Just as an object (product, process, environment) is obtained through 
implementation of an object design, so an object design should be 
obtained through the implementation of an object's design of design:  

               object design of design   object design  artifact (physical object)"                   (4) 

An extension of string (4) to the left (design of design of design, etc.) is replaced with the 
sequence of design-of-design maturity levels (MLi, i=0,1,2,…,n). This sequence is called 
diachronic (dh) or "historical" structure (St) of design-of-design, while componentization of 
each MLi is referred to as synchronous (sh) structure or semantics (Sm) of respective MLi. If 
the semantics of each MLi is determined, we have the approximation model of the design-of-
design (and a design as well): AM=(St, Sm). The opposite case, when semantics is abstract 
(Sm*), is referred to as quasi-approximation model: qAM=(St, Sm*) or design platform. 

3.2.1 The structure of design platform 

It is just the time to consider the development of St qAM, which consists of three steps: 
revealing design dh-structures for LCE, product and DPR. First, try to identify LCE and 
construct a primary dh-structure for its design. LCE is a family of processes {PRq}, which a 
product deals with throughout its lifecycle. There are only three kinds of relations between a 
product and a process from the family: a product can play the role of the input, disturbance or 
processor with respect to any process from {PRq} (Figure 2a). Hence, we can break {PRq} up 
to three constituent sets: {PRq1}, {PRq2} and {PRq3} (Figure 2b).  
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Processes from {PRq1} place on their input a number of requirements (Rq); this set is shared 
by the product life cycle stages (six in our case). Processes from {PRq2} impose restrictions 
(Rs) on their disturbance. Processes from {PRq3} specify for their processor the operation 
conditions (Cn). In turn, each constituent set is divided into motivated (we drop the details) 

number of subsets. Having taken the members of each set for the vector of 3D space, we 
shaped dh-structure of LCE (Figure 2c). The latter is referred to as &-cube. 

                        a)                                             b)                                                                       c) 

Figure 2. LCE dh-structure construction 

Next, following evolutionary DPC, construct primary dh-structure for a product design. We 
distinguish for the latter four sequentially attainable design states and call them design goals: 
Prototype (PRT), Market version (ITM), Manufacturing version (COM) and Artifact (ART).  

Each design goal involves four subgoals: quasi-system or qSYS (a minimal set of product 
units), system or SYS (the extension of qSYS with control functions), quasi-design or qDES 
(space layout of the SYS constituents) and design or DES (the qDES components are 

assigned with shape, materials, grades of finish and all necessary joints). Transform the 
obtained hierarchy into quasi-hierarchy (q-hierarchy) by closing the nesting hierarchy, i.e. 
making the latter actual across horizontal as well. The resulted dh-structure is shown in 

Figure 3. 

Figure 3. Primary dh-structure for a product design 

Taking into account that the DPR under design would deal concurrently with both dh-
structure of a product and LCE, dh-structure of the DPR design is obtained by substitution of 
&-cube for terminals in the above q-hierarchy. Then DPR design dh-structure is borrowed for 

both other designs – product and LCE, taking the status of St qAM. Whereupon, it takes 

only to refine Sm* qAM to come from qAM to AMP, AMLCE or AMDPR. 

3.2.2 Design platform semantics 

Diachronic structure of the design platform imparts the property of quasi-dynamics to design 
representation if synchronous view of the structure items remains static. We may try to make 
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representation completely dynamic via dynamic presentation of qAM semantics. Dynamics 
implies a process, that is sh-content of each dh-structure item should be presented by a 

process or structure out of processes. Hence, Sm* qAM is generally a conditional 
(undetermined) process, determination of which means the Sm* refinement. 

3.3 DPR design construction 

As any other design, DPR design matures through evolving. The chosen design progress 
concept for DPR (DPCDPR) is the same as for the product one – "evolution of individual", that 

is successive adaptation of the current design state to the new state of a design 
environment. But design environment for DPR design differs from the environment for a 
product. For the former, we take the power of intended operational space for DPR design: 

 3Di (domain-, task- and processor-independence); 

 2Di (domain- and processor-independence); 

 1Di (P-independence). 

Thus, DPR design should have three maturity levels (ML): ML
DPR

D3 , ML
DPR

D2  and ML
DPR

D1
 

respectively. To construct ML
DPR

D3 , we use qAM – the 3Di design platform. The refinement of 

Sm* qAM, when moving to AMDPR, results in iteration of the twain of processes (Figure 4): 
product design state synthesis (SPRP) and LCE design state synthesis (SPRLCE). This twain 
is assigned to each item (&-cube cell) of DPR design dh-structure. 

DPR design with ML
DPR

D2  is produced by imparting to ML
DPR

D3  the ability to adjust its structure 

to a design task (a sought-for product and design goal). Lastly, DPR design with ML
DPR

D1  is 

obtained by adding ML
DPR

D2  with domain specific knowledge (applied software, theories, 

gained experience, design methods, etc.), structured in compliance with the structure of 

ML
DPR

D3  and provided with a knowledge management system. 

Figure 4. AM
DPR

 semantics 

3.4 Conjugate problem solving 

3.4.1 2Di solution of CPDP 

Now when the CPDP input (DPR design) has been identified, we can proceed to problem 

solving, that is mDPR CPDP determination. But let us first obtain the solution when DPR 

design ML entering the problem input is ML
DPR

D2 . In this case, we obtain not mDPR but so 

called quasi-DPR (qDPR). Though qDPR performance cannot produce domain-specific DPR 
(2Di DPR design implementation should result in 2Di DPR, which is inoperative), its 
destination is to serve for mDPR platform.  

Indeed, D qDPR is the procedure realizing &-cubes traverse with triggering in each cell the 

twain of processes (Figure 4), while P qDPR is determined as diprocessor [Sedenkov 2006] 
(HH, HC, CH or CC, where H is a human being and C – a computer, for instance) or action 
system platform for mDPR. At the same time, the facilities of qDPR implementation (a 
special purpose OS) have gotten the name of domain-independent Design Machine 
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P

LCE design state as 

control data for D SPR
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[Sedenkov 2004] considered as the platform for domain-specific design system – the 
facilities that support mDPR implementation. 

3.4.2 1Di solution 

Determination of mDPR=(D, AS) upon subject gives the AS configuration. Determination 

upon object D results in D qDPR added with abilities to interact with the knowledge 

management system from ML
DPR

D3 . As mDPR implementation (Axiom 1) entails concurrent 

inference and performance of domain-specific DPR, the former is called design engine.  

4. The outcomes of design problem q-realization 

4.1 Platform approach in "design industry" 

Overall, the technology of design problem q-realization shifts the focus from design process 
to meta-design process and from representation of a product to representation of a design 
(product design, life cycle environment design or any process design) – particularly dynamic 
representation. This can be easily observed while analyzing the four platforms distinguished 
in the course of design problem q-realization: for a design (qAM), for meta-DPR (qDPR), for 
mDPR action system (dP), and for design system (DM). Each of those brings its own 

contribution to design theory and practice.  

Thus design platform outlines yet another constructive definition of designing: transformation 

of qAM into AM through the refinement of abstract semantics Sm* qAM. We have used the 

unified design platform to produce designs of a product, its life cycle environment and design 
process. In the case of product, Sm* specification means q-realization of the structure 
synthesis problem (via realization of its conjugate problem – product operation process 

determination [Sedenkov 2000]).  

The major role of 3Dindependent meta-DPR platform (qDPR) consists in transfer the key 
platform's properties (complete, holistic and continuous structure) to domain-specific meta-
DPR (and upward to design system). Thus, meta-DPR plays the part of design engine – it 
weavers the goal DPR, implements it and delivers the sought-for product design. In the end, 
meta-DPR platform serves the purpose of DPR designing. Shifting the focus from design 

process (a priori nonexistent by nature) to the constantly available meta-design process 
allows also to eliminate the problem of design process complexity: the complexity problem 
loses its sharpness in point of regular meta-DPR since the structure of the latter does not 

critically depends on product structure.  

While addressing to mDPR action system platform (dP=CH, where C is a master processor –
a computer, and H – a human processor providing control data for C), we can note that it 
enables to refine both the matter of design automation and its subject (meta-DPR). Thereby 

the present intuitive notion of design automation gives place to the more accurate one. 

The use of design system platform (design machine, DM) leads to the new efficient and 
effective technology of design computerization (automation): the compilation a wind range of 
domain-, product-, user-, and media-oriented design systems via replication of domain-
independent DM and further extension it with domain-specific SW and knowledge 
management system.  

In turn, the bulk of facilities used for platform technology description may shape, in our view, 
design language (DL) platform, which should allow to change from the current substantially 
intuitive notion base of designing to more strict one and thereby to serve for design 
coordination over distance and across professions. Concurrently, this will not prevent from 
making platform-based domain-specific design languages as a universal DL is hardly 

possible. 
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4.2 Platform approach to Design science 

The above stated entails the issue of Design Science platform as well. What is it all about? 
To date we, evidently, have no Design Science – there are only numerous fragments of the 
amorphous building remaining up in the air as it has no foundation bed; call it "virtual Design 
Science". It was observed [Sedenkov 2008] that real Design Science does not need to be 
created but needs activation via underpinning the hanging construction with the third 
constituent of Design Science – Science for design1 (Science in design, which goes back to 
[Simon 1970], and Science of design [Gasparsky 1990] are the rest and available 
constituents of Design Science). Science for design identification consists in attribution of the 
triple of its paradigmants –"design representation", "DPC" and "DP problem realization". 

But this way of Design Science structuring is fraught with a lot of interpretations and arguing. 
To reduce those, we propose instead of three "sub-sciences" the three layers of a single real 
Design Science (Figure 5): 

 system or generative layer (the former Science for design), 

 application or technological layer (the former Science in and of design or, otherwise,  
    "set of the knowledge needed for designing" [Hubka 1996]),  

 integrative layer (links the two first layers in a manner of "knowledgemation of design 
problem q-realization").                  

Each layer has its own paradigm. The first or generative layer, responsible for design 
problem q-realization, plays the part of Design Science platform (fundamentals). The twain of 

two first layers presents designing as a "discipline in its own right", while another twain – the 
second and third layers – provides it with interdisciplinary perception.  

Figure 5. The proposed three-layered structure of Design Science 

5. Conclusion   

Design problem q-realization crosses the positivism of H. Simon (designing as problem 

solving, [Simon 1970]) and constructivism of D. Schön (the study of designer's activity) 
[Schön 1983, 1992]. In addition to the Simon's concept, we have changed the coined 
characteristic of design problem ("ill-defined") for the more promising one – "unsolvable of 
the second kind". This resulted in realization of the conjugate problem relative to the 
phantom DP – the problem of design process design implementation. In addition to the 

Schön's concept, there has been proposed the proactive model of interaction between a 
product design and product life-cycle environment ("evolution of individual") embodied in 

                                                
1 Our treatment of Science for design quite differs from [Krippendorff 2006]. 
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DPR design. Thus, the things have gone to platforms. On the whole, the platform-based 

reasoning paves the way for domain-independent approach to theory and research in design.  

Individual remark should be made on Design Science platform. There is an impressive 
number of questions induced by design theory and practice that remain without answers. For 
instance, "How it is that designers can commence designing with incomplete information and 
before all the relevant information is available?" [Gero 2006] or "How do we register and 
transform needs into a product goal specification?" [Andreasen 2001]. Layerwise structure of 
Design Science and the substance of its generative layer enable to field these questions and 
eventually to clear up the situation with calls for "engineering design science consolidation". 
On the evidence of the above stated we prefer the appeal to (consolidated) Design Science 
activation and its further development.  
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