

91

AEDS 2008 WORKSHOP

31 October – 1 November 2008, Pilsen - Czech Republic

DESIGN PROBLEM q-REALIZATION AND ITS OUTCOMES

Vladimir Sedenkov

Keywords: meta-design process, design industry platforms, design science structure

1. Introduction

Design problem (DP) has a stable reputation of ill-structured [Simon 1970] or even wicked
[Rittel 1973]. At the same time, absent adequate realization of DP retains unclear the design
process (DPR) itself. The multiple conjectural models of DPR merely promote its
disintegration. In turn, the lack of DPR-oriented knowledge entails inarticulateness of design
automation, inefficient and non-technological utilization of design methods and knowledge,
vague ways to counteract DPR complexity growth, chaotic picture of design related research.

All of this causes the feeling of "the end of design methodologies" [Nauman 2004].

On the other hand, absent DP realization leaves doubtful the outlines and power of Design
Science, disabling it to field many questions induced by design theory and practice. Thus, the
appeal to engineering Design Science consolidation [Birkhofer 2006], as well as the claim
"designing is a discipline in its own right" [Andreasen 2001], have an ambiguous effect: the
both of items cause no doubts to be raised but evidently swap the events, leaving the cart
before the horse (there is neither the mater to consolidate nor separate discipline yet).

More concisely, the lack of adequate DP realization has turned into dam that, in our view,
hinders both Design Science progress and design practice enhancement. In this paper, we
propose a way of DP quasi-realization and consider its outcomes.

2. The glimpse into continuous process theory – a formal tool at hand

Process scheme: a process (PR) representation by the pair (D, P), where D is a procedure to
produce the process result, and P is a processor intended to perform D: PR=(D, P). A set of

processes (processes schemes) is added with three relations, coupling any two members of
the set:

 providing relation (or p-relation): an output of PR2 serves for the input of PR1

(PR2
p PR1);

 relation of determination (d-relation): the output of PR2 is a new state of D PR1 or P PR1

(PR2
d

PR1);

 empty or -relation (PR1 and PR2 are mutually independent).

Non-empty relations are used to make continuous structures out of processes – the n-order

structures (here n= 3,1). For instance, conditional PR1 requires determination of its D and P

via performance of respective processes: "search for D" (SD) and "search for P" (SP):

 SD
d

 PR1
d

 SP (1)

92

PR1 is the core of the structure while SD and SP form the structure's tail. Notation (1) is the
example of the first order structure (n=1). The structures with n=1 serves for the elements of
the second order structures. Let us construct one of those.

In short, any problem statement is "what is needed" (delivered by a virtual PR1) and "what is
given" (provided by PR2). Following [Polia 1965], we distinguish a "problem solution"

(determined D PR1 and P PR1) and an "answer to the problem" (an output of PR1
performance). Then any problem (PrB) can be represented by its scheme when "what is

needed" has indirect presentation – by a providing process:

 PrB1=<<SD, SP>< PR1>> (2)

 p

 PR2

The output of PR2 enters the input of PR1. Having restored upon PR2 its problem scheme, we
obtain the structure out of problem schemes (n=2; PR2 is supposed to be provided; relation

between structures is the relation between their cores):

 PrB1=<<SD, SP>< PR1>>

 p

 PrB2=<<SD, SP><PR2>>

Not going into elucidation, make only an example of the structure with n=3 – the so-called
super- or S-tree (Figure 1). S-tree is an arc-bichromatic tree where each S-node is an

ordinary tree – the third order structure.

FP
C

2

3

1113
15

16

14
10 19 21

FP
C

9

20

22

121718

49

8

7

6
5 24

23

d

d

PRC

S
1

S
2

 S
0

1

Figure 1. The fragment of the third order structure out of processes

3. Design problem quasi-realization

Let DP=<<SD, SP><DPR>> be design problem scheme, where DPR is a design process. In
the general case, DPR input is shaped by needs and requirements. On the one hand, DP is

insoluble (D DPR does not exist): the needs and requirements cannot be transformed into a
goal design – the former and the latter are different conceptual worlds [Meijers 2000]. On the
other hand, DP has the answer (a design). As DP has no solution, we call it quasi- or q-
realizable.

3.1 What is a conjugate problem for the design problem?

Thus, there should be another problem actually realized instead DP – call it conjugate with
respect to DP: CPDP. The latter should be soluble and the answer to it coincides with the
sought-for answer to DP. There is nothing for it but to find and realize CPDP. (Note that

93

problem realization consists of two steps: problem solving – the performance of processes
<SD, SP>, and the answer inference – the performance of <PR> or, in case of DP, <DPR>).

CPDP is obvious from the Axiom 1 [Sedenkov 2008]:
"Just as a physical product is the outcome of product design
processing, so a product design has been an outcome of design
process design implementation (processing)".

This axiom defines both the process conjugate to DPR and this process input. We call the
former meta- or mDPR (because it has concurrently to weaver a priori non-existent DPR and
to perform it) and the latter – DPR design (3).

 CPDP =<<SD, SP><mDPR>> (3)

 DPR design

Due to (2), to determine mDPR, we have first to construct its input – DPR design (Section

3.3).

3.2 Preliminary discussion on design representation in general

The objective of design process is to produce a product design via implementation some
product design progress concept (DPCP). The declared DPCP is "evolution of individual" (in

contrast to "evolution of population" [Gero 1996]): adaptation of the current design state to a
new state of a product life cycle environment (LCE). This presupposes evolving (designing)
of both a product and its LCE (DPCLCE = DPCP). In other words, we have to deal in the
course of DP q-realization with the three kinds of designs – for a product, LCE and DPR.

In the case of that, why do not we construct some generic pre-design – a unified base for
shaping any design from the triplet? To be feasible, such a base has to meet the
precondition – to be domain-, task- and processor-independent (call it 3D independence or,
for short, 3Di). Besides, our evolutionary DPC implies representation of a pre-design

dynamics. What should it be (see Section 3.2.2)? Static representation of a design
(drawings, for instance) is necessary for analysis, modeling, optimization and physical
embodiment of a design. But those do not fit to design synthesis.

The starting point for the generic base search gives Axiom 2:
"Just as an object (product, process, environment) is obtained through
implementation of an object design, so an object design should be
obtained through the implementation of an object's design of design:

 object design of design object design artifact (physical object)" (4)

An extension of string (4) to the left (design of design of design, etc.) is replaced with the
sequence of design-of-design maturity levels (MLi, i=0,1,2,…,n). This sequence is called
diachronic (dh) or "historical" structure (St) of design-of-design, while componentization of
each MLi is referred to as synchronous (sh) structure or semantics (Sm) of respective MLi. If
the semantics of each MLi is determined, we have the approximation model of the design-of-
design (and a design as well): AM=(St, Sm). The opposite case, when semantics is abstract
(Sm*), is referred to as quasi-approximation model: qAM=(St, Sm*) or design platform.

3.2.1 The structure of design platform

It is just the time to consider the development of St qAM, which consists of three steps:
revealing design dh-structures for LCE, product and DPR. First, try to identify LCE and
construct a primary dh-structure for its design. LCE is a family of processes {PRq}, which a
product deals with throughout its lifecycle. There are only three kinds of relations between a
product and a process from the family: a product can play the role of the input, disturbance or
processor with respect to any process from {PRq} (Figure 2a). Hence, we can break {PRq} up
to three constituent sets: {PRq1}, {PRq2} and {PRq3} (Figure 2b).

94

Processes from {PRq1} place on their input a number of requirements (Rq); this set is shared
by the product life cycle stages (six in our case). Processes from {PRq2} impose restrictions
(Rs) on their disturbance. Processes from {PRq3} specify for their processor the operation
conditions (Cn). In turn, each constituent set is divided into motivated (we drop the details)

number of subsets. Having taken the members of each set for the vector of 3D space, we
shaped dh-structure of LCE (Figure 2c). The latter is referred to as &-cube.

 a) b) c)

Figure 2. LCE dh-structure construction

Next, following evolutionary DPC, construct primary dh-structure for a product design. We
distinguish for the latter four sequentially attainable design states and call them design goals:
Prototype (PRT), Market version (ITM), Manufacturing version (COM) and Artifact (ART).

Each design goal involves four subgoals: quasi-system or qSYS (a minimal set of product
units), system or SYS (the extension of qSYS with control functions), quasi-design or qDES
(space layout of the SYS constituents) and design or DES (the qDES components are

assigned with shape, materials, grades of finish and all necessary joints). Transform the
obtained hierarchy into quasi-hierarchy (q-hierarchy) by closing the nesting hierarchy, i.e.
making the latter actual across horizontal as well. The resulted dh-structure is shown in

Figure 3.

Figure 3. Primary dh-structure for a product design

Taking into account that the DPR under design would deal concurrently with both dh-
structure of a product and LCE, dh-structure of the DPR design is obtained by substitution of
&-cube for terminals in the above q-hierarchy. Then DPR design dh-structure is borrowed for

both other designs – product and LCE, taking the status of St qAM. Whereupon, it takes

only to refine Sm* qAM to come from qAM to AMP, AMLCE or AMDPR.

3.2.2 Design platform semantics

Diachronic structure of the design platform imparts the property of quasi-dynamics to design
representation if synchronous view of the structure items remains static. We may try to make

{ PRq }

{PR
Rs

1
}

{PR
Rs

2
}

{PR
Cn

1 }

{PR
Cn

2
}

{PR
Cn

3
}

{PR
Cn

4
}

{PR
Rq

1 }

{PR
Rq

2
}

{PR
Rq

3
}

{PR
Rq

4
}

{PR
Rq

5
}

{PR
Rq

6
}

{ }q2 {PR }q3q
 1

{PR } PR

PR

PR q

q

PRq

2

1
3

}q{PR

Product as

the disturbance

Product as

the input

Product as

the processor

DESIGN

ARTCOMPRT ITM

q

S

Y

S

S

Y

S

q

D

E

S

D

E

S

q

S

Y

S

S

Y

S

q

D

E

S

D

E

S

q

S

Y

S

S

Y

S

q

D

E

S

D

E

S

q

S

Y

S

S

Y

S

q

D

E

S

D

E

S

95

representation completely dynamic via dynamic presentation of qAM semantics. Dynamics
implies a process, that is sh-content of each dh-structure item should be presented by a

process or structure out of processes. Hence, Sm* qAM is generally a conditional
(undetermined) process, determination of which means the Sm* refinement.

3.3 DPR design construction

As any other design, DPR design matures through evolving. The chosen design progress
concept for DPR (DPCDPR) is the same as for the product one – "evolution of individual", that

is successive adaptation of the current design state to the new state of a design
environment. But design environment for DPR design differs from the environment for a
product. For the former, we take the power of intended operational space for DPR design:

 3Di (domain-, task- and processor-independence);

 2Di (domain- and processor-independence);

 1Di (P-independence).

Thus, DPR design should have three maturity levels (ML): ML
DPR

D3 , ML
DPR

D2 and ML
DPR

D1

respectively. To construct ML
DPR

D3 , we use qAM – the 3Di design platform. The refinement of

Sm* qAM, when moving to AMDPR, results in iteration of the twain of processes (Figure 4):
product design state synthesis (SPRP) and LCE design state synthesis (SPRLCE). This twain
is assigned to each item (&-cube cell) of DPR design dh-structure.

DPR design with ML
DPR

D2 is produced by imparting to ML
DPR

D3 the ability to adjust its structure

to a design task (a sought-for product and design goal). Lastly, DPR design with ML
DPR

D1 is

obtained by adding ML
DPR

D2 with domain specific knowledge (applied software, theories,

gained experience, design methods, etc.), structured in compliance with the structure of

ML
DPR

D3 and provided with a knowledge management system.

Figure 4. AM
DPR

 semantics

3.4 Conjugate problem solving

3.4.1 2Di solution of CPDP

Now when the CPDP input (DPR design) has been identified, we can proceed to problem

solving, that is mDPR CPDP determination. But let us first obtain the solution when DPR

design ML entering the problem input is ML
DPR

D2 . In this case, we obtain not mDPR but so

called quasi-DPR (qDPR). Though qDPR performance cannot produce domain-specific DPR
(2Di DPR design implementation should result in 2Di DPR, which is inoperative), its
destination is to serve for mDPR platform.

Indeed, D qDPR is the procedure realizing &-cubes traverse with triggering in each cell the

twain of processes (Figure 4), while P qDPR is determined as diprocessor [Sedenkov 2006]
(HH, HC, CH or CC, where H is a human being and C – a computer, for instance) or action
system platform for mDPR. At the same time, the facilities of qDPR implementation (a
special purpose OS) have gotten the name of domain-independent Design Machine

SPR
LCE

SPR
P

LCE design state as

control data for D SPR
P

Product design state as

control data for D SPR
LCE

96

[Sedenkov 2004] considered as the platform for domain-specific design system – the
facilities that support mDPR implementation.

3.4.2 1Di solution

Determination of mDPR=(D, AS) upon subject gives the AS configuration. Determination

upon object D results in D qDPR added with abilities to interact with the knowledge

management system from ML
DPR

D3 . As mDPR implementation (Axiom 1) entails concurrent

inference and performance of domain-specific DPR, the former is called design engine.

4. The outcomes of design problem q-realization

4.1 Platform approach in "design industry"

Overall, the technology of design problem q-realization shifts the focus from design process
to meta-design process and from representation of a product to representation of a design
(product design, life cycle environment design or any process design) – particularly dynamic
representation. This can be easily observed while analyzing the four platforms distinguished
in the course of design problem q-realization: for a design (qAM), for meta-DPR (qDPR), for
mDPR action system (dP), and for design system (DM). Each of those brings its own

contribution to design theory and practice.

Thus design platform outlines yet another constructive definition of designing: transformation

of qAM into AM through the refinement of abstract semantics Sm* qAM. We have used the

unified design platform to produce designs of a product, its life cycle environment and design
process. In the case of product, Sm* specification means q-realization of the structure
synthesis problem (via realization of its conjugate problem – product operation process

determination [Sedenkov 2000]).

The major role of 3Dindependent meta-DPR platform (qDPR) consists in transfer the key
platform's properties (complete, holistic and continuous structure) to domain-specific meta-
DPR (and upward to design system). Thus, meta-DPR plays the part of design engine – it
weavers the goal DPR, implements it and delivers the sought-for product design. In the end,
meta-DPR platform serves the purpose of DPR designing. Shifting the focus from design

process (a priori nonexistent by nature) to the constantly available meta-design process
allows also to eliminate the problem of design process complexity: the complexity problem
loses its sharpness in point of regular meta-DPR since the structure of the latter does not

critically depends on product structure.

While addressing to mDPR action system platform (dP=CH, where C is a master processor –
a computer, and H – a human processor providing control data for C), we can note that it
enables to refine both the matter of design automation and its subject (meta-DPR). Thereby

the present intuitive notion of design automation gives place to the more accurate one.

The use of design system platform (design machine, DM) leads to the new efficient and
effective technology of design computerization (automation): the compilation a wind range of
domain-, product-, user-, and media-oriented design systems via replication of domain-
independent DM and further extension it with domain-specific SW and knowledge
management system.

In turn, the bulk of facilities used for platform technology description may shape, in our view,
design language (DL) platform, which should allow to change from the current substantially
intuitive notion base of designing to more strict one and thereby to serve for design
coordination over distance and across professions. Concurrently, this will not prevent from
making platform-based domain-specific design languages as a universal DL is hardly

possible.

97

4.2 Platform approach to Design science

The above stated entails the issue of Design Science platform as well. What is it all about?
To date we, evidently, have no Design Science – there are only numerous fragments of the
amorphous building remaining up in the air as it has no foundation bed; call it "virtual Design
Science". It was observed [Sedenkov 2008] that real Design Science does not need to be
created but needs activation via underpinning the hanging construction with the third
constituent of Design Science – Science for design1 (Science in design, which goes back to
[Simon 1970], and Science of design [Gasparsky 1990] are the rest and available
constituents of Design Science). Science for design identification consists in attribution of the
triple of its paradigmants –"design representation", "DPC" and "DP problem realization".

But this way of Design Science structuring is fraught with a lot of interpretations and arguing.
To reduce those, we propose instead of three "sub-sciences" the three layers of a single real
Design Science (Figure 5):

 system or generative layer (the former Science for design),

 application or technological layer (the former Science in and of design or, otherwise,
 "set of the knowledge needed for designing" [Hubka 1996]),

 integrative layer (links the two first layers in a manner of "knowledgemation of design
problem q-realization").

Each layer has its own paradigm. The first or generative layer, responsible for design
problem q-realization, plays the part of Design Science platform (fundamentals). The twain of

two first layers presents designing as a "discipline in its own right", while another twain – the
second and third layers – provides it with interdisciplinary perception.

Figure 5. The proposed three-layered structure of Design Science

5. Conclusion

Design problem q-realization crosses the positivism of H. Simon (designing as problem

solving, [Simon 1970]) and constructivism of D. Schön (the study of designer's activity)
[Schön 1983, 1992]. In addition to the Simon's concept, we have changed the coined
characteristic of design problem ("ill-defined") for the more promising one – "unsolvable of
the second kind". This resulted in realization of the conjugate problem relative to the
phantom DP – the problem of design process design implementation. In addition to the

Schön's concept, there has been proposed the proactive model of interaction between a
product design and product life-cycle environment ("evolution of individual") embodied in

1 Our treatment of Science for design quite differs from [Krippendorff 2006].

- Design language

- Design knowledgemation

- Design engine

- Design system

- Design progress concept

- Design representation

- Design problem realization

P

A

R

A

D

I

G

M

A

N

T

S

System

layer

Integrative layer

Application

layer

DESIGN

SCIENCE

98

DPR design. Thus, the things have gone to platforms. On the whole, the platform-based

reasoning paves the way for domain-independent approach to theory and research in design.

Individual remark should be made on Design Science platform. There is an impressive
number of questions induced by design theory and practice that remain without answers. For
instance, "How it is that designers can commence designing with incomplete information and
before all the relevant information is available?" [Gero 2006] or "How do we register and
transform needs into a product goal specification?" [Andreasen 2001]. Layerwise structure of
Design Science and the substance of its generative layer enable to field these questions and
eventually to clear up the situation with calls for "engineering design science consolidation".
On the evidence of the above stated we prefer the appeal to (consolidated) Design Science
activation and its further development.

References

[Andreasen 1998] Andreasen, M., "The role of artefact theories in design", Proceedings of the
Workshop Universal Design Theory, Karlsruhe, Germany, 1998, pp 57-71.
[Andreasen 2001] Andreasen, M., "The contribution of design research in industry – reflections on 20
years of ICED conferences", Proceedings of the ICED'01, Glasgow, Scotland, UK, 2001, pp 3–10.
[Birkhofer 2006] Birkhofer, H. and Weber, B., "The consolidation of engineering design science – an
utopian dream?", Proceedings EDIProD 2006, Rohatynski, R. and Poslednik, P. (eds), Zielona Gora,
Poland, 2006, CD.
[Gasparsky 1990] Gasparsky, W. and Strzalecki, A., "Contributions to Design Science: Paradoxical
Perspective, Design Methods and Theories", Journal of DMG, Vol.24, No.2, 1990, pp 1186–1194.
[Gero 1996] Gero, J., "Creativity, Emergence and Evolution in Design", Knowledge-based Systems,
Vol.9, No.7, 1996, pp 435–448.
[Gero 2006] Gero, J., "Design prototypes: a knowledge representation schema for design", AI
Magazine, No.11, 2006, pp 26-36.
[Hubka 1996] Hubka, V. and Eder, W., "Design Science", Springer-Verlag, London, 1996.
[Krippendorff 2006] Krippendorff, K., "The Semantic turn: a new foundation for design", Taylor and
Francis CRC Press, Boca Raton, Florida, USA, 2006.
[Meijers 2000] Meijers, A., "The relational ontology of technical artifacts", In: "The empirical turn in the
philosophy of technology", Kroes, P. and Meijers, A. (eds.), Elsevier Science, Oxford, 2000.
[Nauman 2004] Nauman, T. and Vajna, S., "Adaptive system management", Proceedings of the TMCE
2004, Horvath, I. and Xirouchakis, P. (eds), Millpress, Rotterdam, 2004, pp 1183-1184.
[Polya 1965] Polya, G., "Mathematical discovery", V.II, John Wiley&Sons, New York–London, 1965.
[Rittel 1973] Rittel, H.and Webber, M., "Dilemmas in a General Theory of Planning", Policy Sciences,
Vol.4, 1973, pp 155-169.
[Schön 1983] Schön, D., "The reflective practitioner: How professionals think in action", Basic Books,
NY, 1983.
[Schön 1992] Schön, D., "Designing as reflective conversation with the materials of a design situation",
Knowledge-based systems, Vol.5, No.1, pp 3-14.
[Sedenkov 2000] Sedenkov, V., "Product structuring and synthesis in evolutionary design",
Proceedings of the TMCE 2000, Horvath, I., Medland, A. and Vergeest, J., (eds), Delft, The
Netherlands, 2000, pp 183-196.
[Sedenkov 2006] Sedenkov, V., "Design process: holistic view", Proceedings EDIProD 2006,
Rohatynski, R. and Poslednik, P. (eds), Zielona Gora, Poland, 2006, pp 227-237.
[Sedenkov 2004] Sedenkov, V., and Guziuk, Z., "Design machine: theory and implementation",
Proceedings of the T MCE 2004, Horvath, I. and Xirouchakis, P. (eds), Millpress, Rotterdam, 2004, pp
1119-1120.
[Sedenkov 2008] Sedenkov, V., "An attempt to answer perennial design questions", Proceedings
EDIProD 2008, Rohatynski, R. and Poslednik, P. (eds), Gdynia-Zielona Gora, Poland, 2008, pp 21-30.
[Simon 1970] Simon, H., "The Science of the artificial", MIT Press, Cambridge, UK, 1970.

Dr. Vladimir M. Sedenkov
Belarus State University, SW Engineering Department
4, Nezavisimosty Ave., Minsk, 220030, Belarus
+375 17 2723344 (voice)
+375 17 2265548 (fax)
sedenkov@bsu.by

	Ab_AEDS2008_ProceedingsBody_2008-11-10
	Bb_AEDS2008_ProceedingsBody_2008-11-10
	IndexAuthors&Tiraz_2008-11-10

