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









The ultimate goal of largescale design organiations are mainly to reduce costs and improve 
reliability and performance of systems while assessing how much risk (cost, schedule, scope) they can 
take and still remain competitive. To achieve this goal they need to develop tools to reach the most 
preferred design product while reducing the time of decision making during the design process, time to 
market and total costs, as well as increasing reliability, safety, satisfactory, performance.  In addition, 
they should understand attitudes toward risk; know where more information is needed and identify 
critical factors and assumptions underlying decisions. To address these needs, this paper introduces 
Optimal RiskBased Integrated Design (ORBID) for multidisciplinary complex systems that offers a 
methodology for obtaining the highest performance within risk constraints while satisfying all 
constraints of the design and development of largescale complex systems. ORBID offers a cumulative 
tool for dealing with these issues by introducing techniques for Design Requirement and Resource 
Allocation Management (DRRAM), Capturing, Assessing and Communication Tool for Uncertainty 
imulation (CACTU) and Flexible Riskbased Optimal Decisionmaking (FROD) in an ECE
based design environment. 

eyods timal iskased design, isk and ncetainty, Decision making, Flexible design 

 
One of the most challenging tasks of the design team during the design and development cycle of 
complex systems is to make decisions to obtain the most preferred design product that satisfy all 
design constraints and requirements within risk and uncertainty constraints. They have to assess how 
much risk (cost, schedule, scope) they can take on and still remain competitive; understand attitudes 
toward risk; where more information is needed and identify critical factors and assumptions 
underlying decisions to aid in the design and development cycle of complex systems. To address these 
needs, this paper introduces Optimal RiskBased Integrated Design (ORBID) shown in Figure 1 and 
Figure 2. ORBID offers a cumulative tool for dealing with these issues by introducing techniques of 
design requirement and resource management, risk and uncertainty management and decisionmaking 
in a collaborative excelbased design environment  
 
    in int anant an oc aocation: During the design and development 
of complex systems, the design team should be aware of properties of systems and subsystems such as 
associated tasks, requirements, criteria, issues, etc. These issues not only define design constraints that 
should be satisfied to meet requirements, but also enable decision makers to predict system and 
subsystem properties so they can devote resources (cost, schedule, time, etc) to subsystems. However; 
design requirements are not so clear in early stages of design and they become clearer when the 
project moves ahead. ORBID provides techniques for Design Requirement and Resource Allocation 
Management (DRRAM) by defining the project from very early stages, determining associated tasks, 
issues and design requirements; dividing the system into subsystems, parallel decisions, decision 
nodes, alternatives; and generating the model. The Risk and UncertaintyBased Integrated Design 
(RUBIC) [1] is used by DRRAM to allocate resources to subsystems. In addition, DRRAM generates 
information sheet that provides necessary information for design teams and helps them to change 
decisions more effectively.  
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    Ris and unertaint management:The design and development cycle of complex systems is 
full of uncertainty, commonly recognized as the main source of risk. One of the challenges for such 
organizations is to assess how much risk (cost, schedule, scope) they can take on and still remain 
competitive. Risk and uncertainty management techniques offer methodologies for dealing with 
uncertainties (qualitative or quantitative; controllable or uncontrollable) and satisfying critical 
challenges that design teams encounter. They provide answers for decision maker’s critical questions: 
1 here is uncertainty from?; 2 hat is its severity and importance?;  hat are possible methods 
to assess, mitigate and deal with risks in the design process;  How do uncertainties propagates and 
what model describes it the best? To address these needs, ORBID introduces the “Capture, 
Assessment and Communication tool for Uncertainty Simulation” (CACTUS) [2]. CACTUS monitors 
systems from very early stages of design and as the project goes forward, identifies the sources, 
severity, boundaries and propagation of uncertainties and identifies and mitigate associated risks. In 
addition, its collaborative environment enables design teams to efficiently and effectively 
communicate uncertainty through the design process and improve their capacity for delivering 
complex systems that meet cost, schedule, and performance objectives. 
    Deisionmaing: During the design lifecycle, design teams trade off among risks, costs and 
performance. They must minimize risks and increase performance of systems by considering all 
requirements and constraints and allocating resources to the most critical areas. These critical areas are 
associated with critical decisions for risky scenarios that can cause failure if combined. However, the 
design of complex systems is iterative by nature and decision makers might have to change their 
decisions many times. This highlights the importance of decisionmaking techniques having the ability 
of adapting to design changes while minimizing the associated costs and time. ORBID addresses this 
issue by introducing the framework and techniques for Flexible Riskbased Optimal Decisionmaking 
(FROD).  FROD helps decision makers wherever a decision should be made among many alternatives. 
It provides techniques for selecting the most preferred product within the optimization domain and risk 
constraints while design requirements are satisfied. It generates and optimizes flexible alternatives 
with respect to minimization of costs and then ranks options based on evaluated costs and associated 
uncertainties. 
 ommuniation in ollaoratie design enironments: Because of the complexity of 
multidisciplinary systems, the design process of such systems is mostly based on team collaboration. 
The design teams must be able to communicate and be aware of decisions made by others as the 
project goes forward. ORBID addresses this issue by providing an updatable excelbased environment. 
In this environment, they are able to update and synchronize data and be aware of decisions made by 
others as the project goes forward. This environment also reduces the ambiguity uncertainty due to 
lack of communication or misunderstanding of the precise definitions of tasks and requirements and 
helps customers, stakeholders and decision makers to communicate effectively and efficiently. 

Figure : The general sheme of Otimal RisBased Integrated Design 
 

Figure 2: The flow diagram of ORBID  
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 
Using the terminology below, ORBID is able to create sheets, diagrams and communication tools: 
 
 The term “Stage” refers to main steps of design determined by design teams. They mainly 
define stages in design by considering parameters such as timeline, design development, etc. 
 : Parallel decisions refer to distinct decisions for each subsystem that have 
independent end points. The parallel decision number is defined by mMM where M is 
the total number of parallel decisions needed for the subsystem. 
 : Decision nodes refer to points in parallel decisions which decision makers should 
make a decision among many design alternatives. 
 Each decision node represents one phase of the associated parallel decision. The phase number 
is defined by n where  is the total number of phases. 
: Each possible decision in decision nodes is called an alternative. The number of 
alternatives is defined by lLL where L is the total number of alternatives in the step. So, 
each alternative is represented by the symbol of Xmnl where m is the number of parallel decisions, n is 
the number of the phase located in the mth parallel decision, and l is the number of alternative located 
in the nth step. 
: Generally tasks introduce why and for what purpose we are making a decision while 
issues refer to constraints that should be satisfied. Tasks and issues represent design variables in the 
form of control factors, which designers can adjust to reach a desirable performance, and exogenous 
parameters in the form of noise factors ,which are impossible or very difficult to control for designers. 

 
Since the design process is iterative by nature and these iterations increase cost design, it is important 
for design teams to have a clear understanding of assumptions, constraints, requirements, performance, 
and traceability into trades and decisions considered from early stages of design. Providing design 
requirement management techniques minimize costs and increase the speed of design. To address this 
issue, ORBID provides techniques for Design Requirement and Resource Allocation Management 
(DRRAM) by analyzing and defining the project, associated tasks, issues, requirements and resources; 
dividing the system into subsystems, parallel decisions, decision nodes, alternatives and generating the 
model. 
 
Design Requirements and Resource Allocation Management (DRRAM), by generating information 
sheets, defines the project and provides all necessary information from early stages of design. 
Information sheets are updatable sheets that enable design teams to evaluate criteria and communicate 
and manage the project and design requirements. DRRAM also allocates resources to subsystems by 
applying the RUBIC design methodology [1]. The logic of RUBIC design is the hierarchical 
decomposition, based on functional modeling of systems, whose functional models evolve as the 
design process moves forward. Furthermore, DRRAM generates flow diagrams for each parallel 
decision, which helps design teams to have a better understanding of the active and passive 
alternatives in each decision node of the associated parallel decision. Finally, it provides the project 
model to help decision makers to have a clearer understanding of the design platform in the early 
stages of design. This model helps decision makers to select the initial model that defines the initial 
selected design platform and design alternatives.  

 
A specific process should be followed in Design Requirements and Resource Allocation Management 
(DRRAM) to help the design team reach the objectives of ORBID (Figure 3): 
 
   The first step in DRRAM is to obtain the initial design project functional model to help 
decision makers to have an understanding of the initial design platform from very early stages of 
design.  This model also helps them to determine initial design alternatives. This model is investigated 
by design teams (including designers, decision makers, stakeholders, customers, etc.) to determine the 
requirements of the project. Knowing these issues, decision makers can model the project at the early 
stages of design and predict systems’ and subsystems’ properties. 
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 The second step in DRRAM is to generate the information sheet. For obtaining information 
sheets, the model created in step 1 is divided into subsystems and parallel decisions and associated 
issues, constraints, and the design requirements are determined by the design team. Due to lack of 
information in early stages of design, generated information sheets are not complete and accurate at 
the beginning of a project, but they are matured as the project moves forward. 
 Decision makers should also determine decision nodes and identify active alternatives. The 
third step in DRRAM helps them in developing decision sheets for decision nodes. In addition, flow 
diagrams are generated in this step that help the design team to have a better understanding of 
alternatives that are being investigated actively/passively in the decision nodes. 
    The fourth step is to allocate resources. DRRAM uses the Risk and Uncertainty Based 
Integrated Concurrent Design (RUBIC) [1] design methodology, which provides a hierarchical 
decomposition, based on functional modeling of systems obtained in step 1, whose functional models 
evolve as the design process moves forward. RUBIC allocates resources to the model by mapping it 
into this optimization problem: (w=[w1,...,wn]T is the risk reduction resource allocation vector and wi is 
the  percentages of resources to be spent on the ith functional risk element) 
 
Minimize   F1= WTƩW 
Maximize: F2= WT 
Subject to W =[w1,...,wn]T 

 

 
Figure 3: The DRRAM methodology   


Figure 4: Uncertainty classification 

 

 


Decisions must satisfy limitations due to constraints associated with systems. One of these limitations 
is uncertainty associated with systems that might lead to failure or suboptimal performance of systems. 
Decision makers encounter lots of uncertainties in each decision they make. Having no plan for 
managing uncertainties increases costs of design and decisionmaking. In the early stages of design, 
uncertainty is the highest since decisions have not yet been made and design alternatives to achieve the 
best design product have not yet been clearly and actively considered. To deal with the uncertainty in 
the design and development of a complex system, team members should be aware of consequences of 
their decisions while being aware of decisions made by others. In addition, different sources of 
uncertainty might not have the same importance as other sources. For example, when the number of 
alternatives is increased, the uncertainty associated with that decision is also increased; however 
offering more choices is not as harmful as other types of uncertainty that cause suboptimal 
performance and even failure. Furthermore, selecting a poor or imperfect definition and classification 
of uncertainty might guide designers to account for it more or less than necessary. These highlight the 
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importance of having a clear understanding of uncertainty, knowing its sources, severity and effects. 
To address these needs, ORBID introduces the “Capture, Assessment and Communication Tool for 
Uncertainty Simulation” (CACTUS) [2].  
 
CACTUS, by identifying sources of uncertainties, classifies uncertainties associated with systems in 
different stages of design. Different sources of uncertainties are not the same in importance and the 
types of treatments that should be considered. In addition, CACTUS, by providing an uncertainty 
assessment method, not only pays attention to quantifying uncertainty, but also addresses qualitative 
uncertainties associated with systems. It achieves this goal by introducing the qualifier and the 
importance number in decision sheets. The importance score devotes unequal weighting from 1 
(lowest) to 4 (highest) to uncertainties associated with alternatives based on expert judgment. The 
qualifier is simply an expression of the qualitative judgment. The importance number and the qualifier 
provide decision sheets with an uncertainty assessment technique, which combines both qualitative 
and quantitative methods. They can be extended to model degrees of belief where only expert 
judgment is possible. Decision sheets also determine alternatives that are considered actively in 
decisionmaking nodes. Furthermore, CACTUS, by providing uncertainty mitigating techniques, 
offers techniques to manage all sources of uncertainty; (controllable or uncontrollable, qualitative or 
quantitative). The ecelbased environment reduces ambiguity due to lack of communication among 
team members, misunderstanding about customers’ requirements and misunderstanding of the precise 
definition of design tasks and requirements. Finally, CACTUS, by modeling uncertainty 
propagation provides a model for propagation of uncertainty. This model gives us a general 
understanding of the project with respect to variances from the predicted model and clarifies noise, 
control factors and linking variables. 

 
Since uncertainty has been a concern in many diverse fields, including design, engineering analysis, 
policymaking, etc., there are several definitions for the term of “uncertainty”. Selecting an imperfect 
definition might guide decision makers to account for uncertainty incorrectly. In recent years, several 
attempts to find a description of uncertainty in the field of complex systems have been made but there 
is still no uniquely accepted definition. In this paper we use the following definitions: “Uncertainty is 
a characteristic of a stochastic process that describes the dispersion of its outcome over a certain 
domain”, [3], and the following definition for risk (Doug Hubbard): “Risk is a state of uncertainty 
where some possible outcomes have an undesired effect of significant loss.” [4]. Uncertainty can be 
due to lack of knowledge (refers to Epistemic or Knowledge uncertainty) or due to randomness in 
nature (refers to Aleatory, Variability Random or Stochastic uncertainty). Figure 4 shows the 
uncertainty classification associated with complex systems introduced by CACTUS [2]. Here we 
describe these sources briefly:  
 
One source of uncertainty, ambiguity uncertainty [5], results from incomplete or unclear definitions, 
faulty expressions or poor communication. Model uncertainty includes uncertainties associated with 
using a process model or a mathematical model. Model uncertainty might be a result of mathematical 
errors, programming errors, and statistical uncertainty. Mathematical errors include approximation 
errors and numerical errors, where approximation errors are due to deficiencies in models for physical 
processes and numerical errors result from finite precision arithmetic [6]. Programming errors are 
errors caused by hardware/software [7, 8], such as bugs in software/hardware, errors in codes, 
inaccurate applied algorithms, etc. Finally, statistical uncertainty comes from extrapolating data to 
select a statistical model or provide more extreme estimates [9]. Uncertainties associated with the 
behavior of individuals in design teams (designers, engineers, etc.), organizations, and customers are 
called behavioral uncertainty. Behavioral uncertainty arises from four sources: Human errors, 
decision uncertainty, volitional uncertainty and dynamic uncertainty. Volitional uncertainty refers to 
unpredictable decisions of subjects during the stages of design [9].  Human errors are uncertainties due 
to individuals’ mistakes. Decision uncertainty [10] is when decision makers have a set of possible 
decisions and just one should be selected. The fourth major source of behavioral uncertainty, dynamic 
uncertainty, is when changes in the organization or individuals’ variables or unanticipated events (e.g., 
economic or social changes) contribute to a change in design parameters that had been determined 
initially. Dynamic uncertainty also includes uncertainties resulted from degrees of beliefs where only 
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subjective judgment is possible. Finally, uncertainties associated with the inherent nature of processes 
are called atural andomness This type of uncertainty is irreducible and decision makers are not 
be able to control it in the design process.  

 
Attempts to quantify uncertainty during the design process have been published, but most focus on the 
quantitative aspects of uncertainty only [11].  These technical methods have to be complemented with 
qualitative methods, including expert judgments. While there have been attempts to accomplish this in 
various fields [12], methods to incorporate both types of uncertainties in a design process are not 
addressed. CACTUS addresses this issue by combining both types and can be extended to include 
places where only expert judgment is possible. Uncertainty assessment methods generally are divided 
into four major approaches based on their characteristics in analyzing data and representing the 
outputs:  
 
A probabilistic approach is based on characterizing the probabilistic behavior of uncertainties in the 
model and includes a range of methods to quantify uncertainties in the model output with respect to 
the random variables of model inputs. These methods allow decision makers to study the impact of 
uncertainties in design variables on the probabilistic characteristics of the model. Probabilistic 
behavior may be represented in different ways. One of the basic representations is the estimation of 
the mean value and standard deviation. Although this representation is the most commonly used result 
of the probability methods, it cannot provide us with a clear understanding of the probabilistic 
characteristics of uncertainties.  Another representation of probabilistic behavior is the probability 
density function (PDF) and the cumulative distribution functions (CDF), which provide the data that is 
necessary for analyzing the probabilistic characteristics of the model. Although the classic statistical 
assessment approaches clarify the type and level of risk by assessing associated uncertainties, they 
cannot take past information into account. To address this problem, a Bayesian approach offers a 
wide range of methodologies based on Bayesian probability theory, assuming the posterior probability 
of an event is proportional to its prior probability [13, 14]. The Bayesian logic can also be used to 
model degrees of beliefs. Simulation methods analyze the model by generating random numbers and 
then observe changes in the output. In other words, a simulation approach is a statistical technique that 
clarifies uncertainties that should be considered to reach the desirable result.  Generally, simulation 
methods are applied when a problem cannot be solved analytically or there is no assumption on 
probability distributions or correlations of the input variables. The most commonly used simulation
based methodology is the Monte Carlo Simulation (MCS) [15]. MCS includes a large number of 
repetitions. Simulation methods can be used on their own or in combination with other methods. 
Methods which incorporate both qualitative and quantitative uncertainty are placed in the fourth 
category as qualitative approaches. One example is NUSAP [12], which stands for “Numeral, Unit, 
Spread, Assessment and Pedigree”, where the first three categories are quantitative measures and the 
two next categories are qualitative quantifiers which might be applied in combination of other 
assessment methods such as Monte Carlo and sensitivity analysis. Another example is ACCORD® 

[16], which is based on the Bayesian theory. 

 
Although being familiar with sources of uncertainty and methodologies for assessing them are critical, 
one challenge remains: how can we handle and mitigate the effects of these uncertainties in the 
systems? In addition, how can we diagnose them before it is too late and they get out of control? To 
answer these questions, CACTUS provides methodologies for uncertainty diagnosis and mitigation: 
 
Uncertainties due to programming errors can be diagnosed by those who have committed them. 
Since programming errors may occur during input preparation, module design/coding and compilation 
stages [17], it can be reduced by better communication, software quality assurance methods [8], 
debugging computer codes and redundant executive protocols. Applying higher precision hardware 
and software can mitigate the effect of mathematical uncertainties associated with the model due to 
numerical errors resulting from finite precision arithmetic. In addition it reduces the effect of 
statistical uncertainties. Statistical uncertainty also can be mitigated by selecting the best data sample 
for the size and similarity to the model. Similar to the statistical uncertainty, approximation 
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uncertainty is minimized when the best model with acceptable range of errors and the best 
assumption for variables, boundaries, etc., is selected. Simulation approaches might be applied to 
generate the best model. Ambiguity uncertainty is naturally associated with human behavior; 
however it can be reduced by clear definitions, linguistic conventions or fuzzy sets theory [5, 18]. 
Volitional Uncertainty, which results from unpredictable decisions especially in multidisciplinary 
design, is diagnosed by other organizations or individuals and is mitigated by hiring better contractors, 
consultants and labor [6, 9]. Although Human errors and individuals’ mistakes are inevitable in the 
system, they might be diagnosed and mitigated by applying human factors criteria such as inspection, 
selfchecking, external checking, etc. When only subjective judgment is possible, the effect of 
dynamic uncertainty can be mitigated by applying the Bayesian approach [13, 14]. In addition, this 
type of uncertainty can be reduced by applying design optimization methods to minimize the effect of 
changes in variables or unanticipated events which contribute changes to design parameters. Such as 
dynamic uncertainty, design optimization is useful for reducing the effect of decision uncertainty. 
Methods based on Bayesian decision theory also can be used to make more informed choices. 
Sensitivity analysis [19] and robust design [20] are also helpful to understand which variables should 
be controlled to improve the performance of the system. 

 
Figure 5 shows the CACTUS methodology in the interactions with Flexible Riskbased ptimal 
Decisionmaking (FRD) and Design Requirement and Resource Allocation Management (DRRAM): 

  The first step is to identify sources of uncertainties. Since sources of uncertainty are not the 
same in terms of importance and also modeling techniques, CACTUS provides a classification for 
sources of uncertainties associated with design of complex systems (Figure 4).  
  The second step in CACTUS is to assess uncertainty. CACTUS provides techniques of 
assessing uncertainties and their boundaries, severity, importance and consequence to the system. 
These criteria are used by Design Requirement and Resource Allocation Management (DRRAM) 
method to weight uncertainties and allocate resources. CACTUS provides techniques of determining 
risk boundaries, which may lead to failure or suboptimal performance. These boundaries are 
considered as risk constraints.  
  The third step is to provide uncertainty mitigating techniques. Weighting uncertainties by 
DRRAM determines techniques and efforts that should be applied to manage uncertainties. Decision 
sheets which provide tools for making decision among sets of alternatives are generated in this step.  
  The first three steps provide the necessary information for design teams regarding 
uncertainties. In this step, the uncertaintybased model for the project is obtained. This model not only 
gives us a general understanding of the project with respect to variances from the predicted model, but 
also clarifies noise, control factors and linking variables applied in formulating the project to an 
optimization problem. 

 
The decision making process in engineering design can be defined as the process of generating and 
selecting of design alternatives and the role of decision makers is to make decisions in the ambiguous, 
uncertain and risky phases of design [21]. As a consequence, in multidisciplinary complex systems, 
decision makers should be aware of all independent and interdependent variables associated with each 
discipline. This process is associated with costs, especially in the early stages of design where design 
teams’ knowledge about the projects is incomplete. For example, decisions made during early stages 
of design costs 80% of total costs of the design life cycle [22]. In addition, iterations increase costs of 
decisionmaking and design. So, developing a flexible design methodology for making decisions 
under uncertainty plays a critical role in minimizing costs of design. 
 
In general, flexibility is defined as “The ease of changing the system’s requirements with a relatively 
small increase in complexity (and rework)” [23]. However, many interpretations for flexibility have 
been introduced by researchers in different fields. For example, in 1986, Buzacott et al [24] developed 
a framework for flexible manufacturing systems to address the problem of changing demands of 
customers and Haubelt (2002) [25] introduced flexible systems for software applications. In the field 
of design methodology, Roser et al have introduced a flexible design methodology [26] to minimize 
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effects of risks and uncertainties in the design process; Olewnik et al have proposed a framework for 
flexible system design [27] with the implementation of Hazelrigg’s decision making framework [28] 
and Suh et al have developed flexible product platform design [29] to address market uncertain change 
demand. These methods address flexibility in design in places that designers choose fixed design 
variables before they select the design. Khire et al [30] proposed a methodology for designing flexible 
systems in changing operating conditions. It addresses the problem of flexibility design in changing 
environments whose operating conditions and design requirements change during the operating life. 
The operational flexibility is an important issue for space systems since space missions are subjected 
to unanticipated changes. Nilchiani et al [31] have addressed both design and operational flexibility in 
space systems by introducing a SixElement (6E) framework for measuring the value of flexibility in 
space systems. ORBID addresses the issue of decisionmaking by introducing Flexible Riskbased 
Optimal Decisionmaking (FROD) framework. FROD, by providing a flexible framework for optimal 
decision making in conjunction with design requirement and resource allocation management 
(DRRAM) techniques and the capture, assessment, and communication tool for uncertainty 
management (CACTUS), helps decision makers wherever a decision should be made among many 
alternatives and provides the most preferred product within the optimization domain and risk 
constraints while all design requirements are satisfied. 

 
Figure 6 shows the process should be done in FROD methodology. Here we describe these steps 
briefly: 
 
 The first step is to investigate the initial design. The platform of the initial design is obtained 
by the initial model generated by DRRAM. The initial design defines the system by identifying initial 
design variables and system responses to them, determining market, demands, initial alternatives and 
change options. It also provides an early estimation of costs and time associated with the selected 
design platform. 
 Uncertainties and variants of the initial investigated design are identified in the second step. 
These uncertainties might be due to changes in design or demands.  
  Identifying uncertainties and variants help to model uncertainties. This uncertaintybased 
model, which is obtained by CACTUS, investigates defect modes that occur when system responses 
cannot satisfy the upper and lower limit of allowed uncertainty. By identifying defect modes, possible 
design change options can be produced to resolve the defect.  
  The fourth step is to generate flexible alternatives. Identifying defect modes and possible 
design changes generates flexible design alternatives.  
 In the fourth step, alternatives should be optimized with respect to minimization of costs while 
all equality and inequality constraints are satisfied.  
  Since cost is one important factor in selecting the design platform, costs associated with 
optimized design alternatives in step 5 are evaluated in this step. 
 Uncertainty is another critical facture for decision makers to select the design. The seventh 
step is to evaluate expected performance and costs of flexible design alternatives under uncertainties. 
 Step eight is to select the best design from the set of design platform alternatives. In this step, 
decision makers make decisions by ranking possible design. Decision makers’ discipline for ranking 
designs depends on costs and uncertainties of associated design alternatives determined in steps six 
and seven. They rank possible design platforms with respect to expected value of their alternatives.  
 It is always possible that the generated best design in Step 8 is not satisfactory or does not 
meet the design requirements. In this case, DRRAM is applied to modify design requirements and 
allocate resources again. As Figure 6 shows, in this case previous 8 steps are repeated until the best 
design platform is found that is satisfactory to designers, stakeholders and customers and meets all 
requirements and constraints. Another strategy is to apply the uncertainty mitigation techniques by 
CACTUS. However applying these techniques brings additional costs that should be evaluated 
beforehand. 
 
In the next section, this paper clarifies some steps of Optimal RiskBased Integrated Design (ORBID) 
very briefly by applying it to NASA’s lunar lander mission case study and generating simple examples 
of decision sheets and information sheets obtained by DRRAM and CACTUS. In addition, an example 
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of the excelbased environment is provided. Further research for developing FROD and applying it to 
a case study is being carried out by authors. 


Figure 5: CACTUS methodology 


Figure 6: FROD methodology 
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Figure 8: ORBID Environment 

 
In this section, we present a case study of a conceptual mission design team at JPL’s Project Design 
Center, borrowed from [32]. This design team, also known as Team X, is a concurrent engineering 
team that has the capability to design an entire mission in one week at the conceptual design stage. 
Their product is a conceptual design that includes the mission architecture, equipment lists, launch 
vehicle and estimates for cost and schedule. Figure 7 shows a portion of decisions that occurred during 
the design of a robotic lunar mission, based on the observations of the team over the course of a week, 
initiated by an internal NASA customer [32]. ORBID prepares an excelbased environment for clients 
to communicate throughout the design life cycle. Figure 8 shows this concurrent collaborative 
environment. As we had mentioned, DRRAM manages design requirements and allocates resources to 
subsystems by providing flow diagrams and information sheets. Figure 9 shows the flow diagram for 
selecting the launch vehicle. Each dotted circle shows the item which is not investigated actively and 
circles with solid lines show active items that take part in decisions. Arrows from left to right show 
items which are added in each phase. Figure 10 shows the information sheet provided by DRRAM. It 
determines the name/symbol; tasks and issues of each parallel decision; divides them into decision 
nodes and describes each decision node in terms of its alternatives. It also provides the project model 
to help designers obtain a clear understanding of the project. Figure 11 shows a general scheme of this 
model. In addition, CACTUS develops decision sheets for decision nodes. Decision sheets have 
columns showing the distribution of issues and the methodology used. The expert judgment score has 
been devoted to show the importance of issues. Figure 12 is the decision sheet for the second phase of 
the first parallel decision (selecting launch vehicle). In this decision sheet, we only considered the 
reliability issue as an example and calculated its distribution by using the thirdlevel Bayesian analysis 
method [33].  
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Figure 7: The robotic lunar lander mission design 
 

Figure 10: The information sheet provided by DRRAM for the lunar lander mission design 
 

Figure 12: Decision sheet 
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Figure 11: The project model 
Figure 9: An example of decision flow diagram  

Ci   = Control factors of subsystem i 
CS = Sharing system control factors 
S  = Sharing system noise factors 
i    = Noise factors of subsystem i 
Lji    = Linking variables (from subsystem i to j) 
Zi     = Zi (CS, Ci, Ns, Ni, Lji) = output of subsystem i 

 
This paper presented Optimal Riskbased Integrated Design (ORBID) for multidisciplinary complex 
systems as a methodology for obtaining the highest performance within risk constraints while 
satisfying all constraints and requirements of the design and development of largescale complex 
systems. ORBID offers a cumulative tool for dealing with these issues by introducing: Design 
Requirement and Resource Allocation Management (DRRAM) framework, the Capture, Assessment 
and Communication Tool for Uncertainty Simulation (CACTUS), and the Flexible Riskbased 
Optimal Decisionmaking (FROD) framework in a collaborative excelbased design environment. 
These techniques were applied in a mission design team case study at NASA JPL’s Project Design 
Center. Future research will focus on developing the FROD methodology and techniques to apply 
flexibility during design and operational conditions. 
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