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Engineering design process is used by engineers to develop products and comprises of enormous number of
interdependent tasks. Literature shows that understanding the interaction of tasks is important to improve the
design process which in turn impacts the success of the product. In this paper we consider task interdependency
dimension (Product Development Process Architecture) of diverse engineering systems. The last few years
have seen new research interest in the study of complex system architectures, like social networks, biological
systems, etc. Seminal works covering each of these systems have appeared in high impact journals like Nature,
Science, etc. Unifying principles have helped in gaining new understanding or extending the understanding
gained in one domain to another. This paper is inspired by these developments. We consider a variety of
product development systems ranging from vehicle design, construction, software, aircraft engine etc. We
show that the considered systems are small-worlds. We determine motifs for each of the considered system
and investigate whether these systems share any motifs across each other. We calculate some centrality metrics
for the considered systems.
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1. INTRODUCTION

Architecture is the fundamental structure of components of a system — the roles they play, and how
they are related to each other and to their environment.! The dictionary definition of complexity refers
to — consisting of interconnected/interwoven components. Complexity of a system scales with the
number of components, number of interactions, complexities of the components & complexities of
interactions.? The last few years have seen a new research interest in the study of complex system
architectures, across domains like social networks, biological systems, etc.>* Unifying principles have
helped in gaining new understanding or extending the understanding gained in one domain to another>
But “Engineers seem a little bit indifferent as if engineering is at the edge of the science of complexity”
is a growing feeling.®

Engineering design process is used by engineers to develop products. The development of any com-
plex engineering product involves enormous number of interdependent tasks. Literature”-3 shows that
understanding the interaction between tasks is important to improve the design process which in turn
impacts the success of the product. This paper views the task dependency dimension (Product Devel-
opment Process Architecture) of diverse engineering systems. We consider 5 product development
system designs like an aircraft engine design,” a vehicle design, hospital facility design, an operating
software design and a pharmaceutical facility design.® We abstract the product development process
architecture of the considered systems as a complex network/graph, where the node/vertex corresponds
to tasks in the system and edges correspond to dependency between tasks. We show that all the con-
sidered product networks are small world networks. In this paper, we discover motifs of sizes 3 to 5
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and tabulate the similar motifs observed across the considered systems. Some centrality measures with
respect to considered systems from complex system architecture are also analyzed.

2. MOTIFS

Motifs have been suggested to be the functional building blocks of network complexity. “Motifs
are recurring sub graphs of interactions from which the networks are built”.!! These are patterns of
interconnections (over represented sub graphs) occurring in complex networks at numbers significantly
higher than those in randomized networks. Milo et al.!! have proposed an algorithm to detect network
motifs. As per their method each network is scanned for all the possible m-node sub graphs and the
number of times each sub graph occurred is noted (Count real). To concentrate on those sub graphs
that are important, a comparison of real network with suitably generated random network is made.
Each randomized network is generated subject to two conditions: (i) Degree distribution of the real
network is conserved in the randomized network (ie number of nodes having a particular count of
edges connected to it will be same in real and randomized network, in a statistical sense) (ii) Each
randomized network which is used to calculate the significance of m-node sub graph has the same
number of appearances of (m-1) node sub graphs as in real network.

We created 1000 random networks for each considered system with the above criteria. We calculated
the number of times each sub graph occurs and estimated its mean, Countrand and its standard deviation,
o. As ameasure of statistical significance, we calculate Z-score as (Count real — Count rand)/o also?.
We discovered all the motifs of size 3 to 5 for each considered system, out of which, only those having
high Z-score are tabulated in Table 1. It is interesting to observe common motifs shared across the
considered diverge systems. We have archived the detailed results for all motifs with size from 3 to 5
in our website.!?

3. SMALL WORLD EFFECT

This concept emerged from the “small-world” experiments of Milgram — where letters passed from
one person to other was able to reach designated target in small number of hops.> Small world effect
has been studied and verified in different types of networks.® The mathematical characterization of
small-world behavior is based on of 2 quantities, viz the average path length L and the clustering
coefficient C. Geodesic path is the average of shortest path associated with each pair of vertices of the
network.* The average geodesic path L for a graph G is defined as

1
L= 1/2n(n — 1) 2. di

1<ij<n

where d ;; shortest path from vertex i to vertex j and n is the number of vertices.

In many networks it has been observed that if vertex Al is connected to vertex A2 and vertex A2 to
vertex A3, then there is more probability that vertex A1 will also be connected to vertex A3. In other
words, Clustering Coefficient C (also referred in literature as transitivity) means the presence of sets
of three vertices each of which is connected to each of the others.*

3 % number of triangles

number of connected triples of vertices

where ‘connected triple’ means a single vertex with edges connecting to a pair of others. In other words
C indicates how much the adjacent vertices of the adjacent vertices of x are adjacent vertices of x.3
Watts and Strogatz proposed a model for small world. The model starts with a ring of n vertices,
each connected to its k nearest neighbors. In this model, a vertex and the edge that connects it to its
nearest neighbors (in a clockwise sense) is chosen. With probability p, this edge is reconnected to a
vertex chosen uniformly at random over the entire ring, with duplicate edges forbidden. This process
is repeated by moving clockwise around the ring, considering each vertex in turn until one round

4Only motifs with significant Z score (Z score > 2) are considered in our experiment
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is completed. Next, the edges that connect vertices to their second-nearest neighbors clockwise are
considered. As before, each of these edges are randomly rewired with probability p. This process is
continued, circulating round the ring and proceeding to distant vertex in the ring after each round,
until each edge in the original lattice has been considered once. As p increases, the graph becomes
increasingly disordered until for p = 1, all edges are rewired randomly. Small world networks can be
regarded as special networks which are superposition of regular and random networks. '® The graph as
plotted using above procedure reveals small world regions — the clustering coefficient is high yet with
geodesic path is small (intermediate values of p). We constructed several random graphs following
the above procedure for each considered system from p=0 to p=1. A graph for one of the considered
systems is shown in Figure 1. L & C for all the considered systems are tabulated in Table 2. As
per, Ref. 9 a network is small world when Lregular > Lreal > Lrandom and Cregular > Creal >>
Crandom.

This condition is satisfied by all the systems considered for study. The small geodesic path and large
clustering coefficient observed for real networks considered here might imply that a change created
by a task may appear to be encapsulated within its cluster, but in reality might navigate quickly across
the entire network.

4. CENTRALITY MEASURES

A metric/measure is an indicator of a system characteristic. Centrality measures helps to determine
the relative importance of a node/edge within the graph. Degree” centrality is defined as the number
of links incident upon a node. The betweenness centrality of a node/edge is defined by the number of
geodesic paths (shortest paths) passing through the respective node/edge. '3 We calculated the centrality
measures for all considered systems (Centreal).

We then created 1000 corresponding random graphs (preserving the number of edges and nodes of
corresponding real network) and calculated the mean centrality measure Centrand and the standard
deviation, o. As a measure of statistical significance, Y-score = (Centreal — Centrand)/o is also
calculated. We tabulate the top three measures for each system in Table 3. Detailed numerical values

00000m 0.000H .00 0.0 0. 01 1
P.

Figure 1. Avg Shortest path (L) and Clustering coeff (C) for family of Randomly rewired graphs®.

b Indegree is count of the number of ties directed to the node, and outdegree is the number of ties that the node directs to
others.

“This graph is for one of the considered system — software design. C and L are normalized with C &L at p=0. Logarithmic
horizontal scale is used to resolve rapid drop in L.
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Table 2. C and L for regular, real and random networks across 5 systems.

No  System Nodes Edges  Cregular Lregular Creal Lreal Crandom  Lrandom
1 Aircraft engine design 54 353 0.6923 241509 0.513342 1.99441 0.228732  1.80293
2 Vehicle design 120 416  0.64285 7.94117 0.12913 2.8781 0.06756 2.5724
3 Hospital facility 820 7751 0.71052  20.9755 0.10636  3.11754  0.02399 2.5843
design

4 Operating software 386 1221 0.6 32.7519 0.13903  3.70019  0.01147 3.5341
design

5  Pharmaceutical 579 3568  0.69230 21.14533  0.11799 2.7276 0.02217  2.70054

facility design

of centrality measures are not tabulated in this paper due to page constraints. All detailed numerical
values of all centrality measures of all nodes are archived in Ref. 12.

5. CONCLUSION AND DIRECTIONS

Albert Barabasi argues that, “The science of networks is experiencing a boom. But despite the necessary
multidisciplinary approach to tackle the theory of complexity, scientists remain largely compartmen-
talized in their separate disciplines”.!* The application of this complex system architectures theory is
still in infancy stage and has very recently entered into study of engineering systems or their design.
This study has revealed that 5 systems considered have revealed ‘small world’ behaviour. Motifs of size
3,4 and 5 have been observed. Some of these motifs are even common to almost all the 5 systems. For
the considered systems, we cannot precisely say whether the above parameters are the only important
quantities to measure. Trying to answer the questions on significance of observed motifs in above
systems, finding new metrics, motifs, models with respect to engineering systems etc. form future
work. Some processes taking place in system, like phase transition, spreading etc, will be interesting
to experiment. Ideas related to complex system architectures may give insight into previously complex
and poorly understood phenomena in engineering domain. The generic interaction between considered
system and systems from other domains like biology etc will be an interesting area to explore.
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