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Abstract 
In this paper we present five modularity practices across the domains of mechanics, electronics 
and software deduced from observations from four companies. The practices are made to help 
product developers of mechatronic products to assist in finding the most efficient modular 
division of the products. Furthermore, we present a tool to assist in cross-domain modularity 
decisions and to help developers follow the five cross-domain modularity practices. 
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1 Introduction 

For decades companies that previously were able to deliver mass produced products with little 
variance have experienced an increase in both globalisation and demand for customised 
products (Nadadur, Kim, Thomson, Parkinson, & Simpson, 2012; Pine, 1993). Higher demand 
for variance means development of more solutions and often this is done sequentially, product-
by-product, resulting in overlapping solutions and increased complexity. At worst this leads to 
costs increasing faster than turnover (M. H. Meyer & Lehnerd, 1997; Wilson & Perumal, 2009). 
Modular product architectures offers a strategy to cope with increasing complexity and make 
more profitable products (M. H. Meyer & Utterback, 1993; Robertson & Ulrich, 1998; Sanchez 
& Collins, 2001). 
In recent years, several scholars have developed methods and frameworks supporting engineers 
in developing modular product architectures (de Weck, 2006; Harlou, 2006; Jung & Simpson, 
2016; Krause et al., 2014; Otto et al., 2016). The methods have been used on both mechanical 
and mechatronic products. However, limited focus has been on modularity practices and effects 
of modularization across the domains of mechanics, electronics and software. The nature of 
product development in these three engineering disciplines varies quite a lot, in the way, that 
they use different supporting tools and methods. Therefore, modularity decisions in one domain 
could have different and maybe negative impact in one of the other domains. 



Often product development is divided into silos i.e. mechanical development, software 
development, etc. Modularity efforts are then driven separate in each silo/domain, or is 
dominated by the representatives of the strongest domain (Gepp, Foehr, & Vollmar, 2016; 
Hehenberger, 2014). Practices for developing modularity across domains could help both 
design engineers and project managers, to avoid conflicting modularity efforts. In this paper, 
we presents and discuss five cross-domain practices that can help product developers when 
designing and re-designing for modularity in mechatronic systems. Furthermore, we present a 
new tool for mapping mechatronic product architectures to show dependencies across 
mechanics, electronics and software. 
The structure of the paper is as follows: First, we present the background theory and the 
methodology for the research. The section "State of the art" describes the state in the literature. 
Following this is the findings of cross-domain modularity practices from four companies. Then 
we present a tool to assist in cross-domain modularity decisions. In the end, we discuss the 
findings and finalise with a conclusion. 

2 Background and methodology 

In this paper we use the definition of 
mechatronic products introduced by Buur 
(1990): A technology, which combines 
mechanics with electronics and information 
technology to form both functional interaction 
and spatial integration in components, modules, 
products and systems. Hence, all products that 
combine physical mechanical and electrical 
components that are controlled by a software 
code. 
This research is theoretically founded in the 
theory of modularisation stating that products 
can be divided into functional units, called 
modules, helping a company to increase 
efficiencies (Marc H. Meyer, 1997; Robertson 
& Ulrich, 1998; Ulrich & Eppinger, 2012). Essentially the scope of the research can be seen as 
an extension of the Theory of Dispositions (TD) (Andreasen & Olesen, 1990; Olesen, 1992) in 
the way that we seek to find practices that deals with effects (dispositions) of modularity 
decisions taken in one engineering domain into another, see Figure 1. Modularity can be made 
with different purpose (Erixon, von Yxkull, & Arnström, 1996) and different engineering 
domains might have different conflicting or non-conflicting inputs to the modularisation 
strategy. In this research, we cover five key modularity practices that arises when looking across 
the domains. 
The research is exploratory (Karlsson, 2016, Chapter 2) and have been conducted as an action 
research (Karlsson, 2016, Chapter 7) where the researchers have been observing case 
companies through close involvement in modularity projects. 
Four companies have provided data input for the findings presented in this paper. All have been 
involved in modularisation research projects with the section of Engineering Design and 
Product Development (K&P) at the Technical University of Denmark (DTU) over a timespan 
of two to three years. All companies have been test cases for implementing state of the art tools 
and methods developed by the K&P section. In this process, the companies have provided data 
for including: product drawings, sales figures, production setup, organisation structures and 
cost structures. Meaning that the companies have given full access to their technical, sales and 

Figure 1: Extension of Theory of 
Dispositions figure from Olesen (1992) 



business data directly from the source being their IT systems. Furthermore, all companies have 
held weekly status meetings with one of the authors. The cross-domain modularity practices 
presented in this paper are derived based on insights from these case companies. 

2.1 Data input - company descriptions 

The four case companies all have different market strategies and product offerings. They range 
from two small to medium sized enterprises (SME), one in the configure-to-order business and 
one in Engineer-to-order (ETO) business. Two large companies is included, one mass-
production and one ETO company. The products the companies produce range from large one-
of-a-kind solutions to smaller technical products, none of which is characterized as consumer 
goods.  
All cross-domain modularisation practices are exemplified with company cases. In all 
companies, all five practices was observed to some degree, but we only included few examples 
that display each practice the best. 

3 State of the art 

The state of the art is divided into two topics: mechatronics and modular product architectures. 
This research builds on the theory of modular product architectures and therefore the review on 
this topic is more extensive. The literature that deals with modular architecture development is 
further divided into 5 groups: product strategy driven models, graphical methods, matrix-based 
models, mathematical models and modularity frameworks. In each group, we will now discuss 
how the state of the art deals with architecture development across mechanics, electronics and 
software and, if any, what effects that might have. 

3.1 Modular architectures 

Product strategy driven models 
The modular function deployment (MFD) methodology developed by Erixon et al. (1996) can 
be used to systematically develop modular product design. The method does not deal with 
detailed design and could be used on all sorts of products including mechatronic  products as 
done by Börjesson (2014). The MFD method in its essence does not explicitly deal with any 
practices of modelling architectures across mechanics and electronics and Börjesson does not 
directly mention modularity practices across the two domains. In its original form, the MFD 
methodology does not address relations from mechanics or electronics to the software domain. 
 
Graphical models 
Graphical models like the Interface Diagram (Bruun & Mortensen, 2012) or the Product Family 
Master Plan (PFMP) (Harlou, 2006) are able to address dependencies across mechanics, 
electronics and software due to the abstraction level the two methods use. Using these models 
on the three engineering domains of a product could give an overview of differences in 
modularity. Both methods have been used on mechatronic products, but in their original form 
do not address dependencies or differences across mechanics or electronics, and the software 
domain have not to our knowledge been included in their use. 
 
 
 
Matrix-based models 
The most commonly used matrix-based model in relation to development of modular product 
architectures would be the Design Structure Matrix (DSM) (Steward, 1981). The DSM have 



been used in many different applications including mechatronic products (Alvarez Cabrera, 
Komoto, Van Beek, & Tomiyama, 2014; Browning, 2016). Algorithms, such as the IGTA 
algorithm (Borjesson & Hölttä-Otto, 2014), can be used to cluster DSMs and could be used on 
DSMs that maps products across mechanics, electronics and software to locate modularity 
synergies across the domains. A certain clustering of a DSM might not be feasible in practice 
across all three domains, and the task of setting up the DSM extends excessively as the product 
increase in complexity. Nor is modularity practices across the three domains explicitly 
presented with DSMs. 
 
Mathematical models 
Mathematical models like De Weck's (2006) model for deciding platform extend or the method 
of Schuh et al. (2017) for contextual design of modular product platforms tends to focus on 
variants of commercial units within a platform or the extend of a certain platform. They do not 
explicitly offer any overview of trade-offs between mechanics, electronics and software or 
describe any practices between the three domains when developing product platforms. 
 
Modularity frameworks 
Platform-based frameworks for developing product platforms like the PKT-approach (Krause 
et al., 2014), the AME (Architecture Mapping and Evaluation) framework (Mortensen, Hansen, 
Løkkegaard, & Hvam, 2016) or the 13 steps for developing a platform concept by Otto et al. 
(2016) can be used across engineering domains, and probably should go across domains when 
developing mechatronic products. However, none of them explicitly covers modularity 
practices that arise when looking across the three domains discussed herein, nor offer any 
formal visualisation practices of dependencies across all three domains. 

3.2 Mechatronics 

Researchers have provided many tools and frameworks for aligning the product development 
process across the mechanics, electronics and software domains when developing mechatronic 
products (De Silva, 2005). Welp and Jansen (2004) presented a method for the domain 
allocation of the functions of products and Hehenberger (2014) gave an overview of a 
hierarchical process representing different disciplines for the design of mechatronic products. 
They focus on single product development and not explicitly families of products. Alvares 
Cabrera et al. (2011) introduced a model, method and tool implementation supporting a 
corporative design process with exchange of information between domains, but focus more on 
knowledge management processes than the product development process. 
Some researchers have been focusing on modularity within mechatronic products. Schuh et al. 
(2019) and Schuh et al. (2016) developed methods for designing mechatronic modules based 
on principles from axiomatic design. They set up axiomatic equations for defining module 
extend (how much variance can a module cover) and present a four step method for designing 
mechatronic modules. Their work focus primarily on the development on single modules. 
Weyrich et al. (2011) presented an approach using DSMs (Design structure matrix) for 
developing so called solution neutral mechatronic modules that can be used across solutions. 
However, they do not focus on complete system design. 

3.3 State of the art conclusion 

No scholars have explicitly presented key practices for modelling product platforms across 
mechanics, electronics and software. Knowledge of pitfalls and good modularity practices 
across the domains might be beneficial knowledge when using existing methods, as most 
products are designed across domains. 



Contributions within the field of mechatronic product development, either focus on the process 
of sharing knowledge between domains or on single products or modules. We see a gap in 
methods or tools to support product developers when designing modular products on a portfolio 
level explicitly addressing cross-domain modularity. 

4 Cross-domain modularity practices 

The five practices presented in this paper were derived from insights from four case companies. 
They describe some fundamental challenges to consider when working with modularity across 
domains. However, due to the nature of the research and limitations of the study, more practices 
might exist. We now present the five cross-domain modularity practices. 

Practice 1: Central or decentral electronics 
Division into modules does not always follow the same logic in the electronics domain as in 
mechanics. Electrical signals are often collected into one central PCB (Printed Circuit Board), 
a so-called I/O board. This means that if an electrical signal from one functional module in the 
mechanics domain change, the I/O board have to be revised, which again means that an 
infliction with other modules' design is made. The driver for collecting the signals is cost, but 
modules that change frequently, might be worth decoupling from the rest, so they can be revised 
independently. If these modules are not decoupled, development might become slow and an 
excessive number of variants of these relatively complex components (I/O boards) must be 
handled.  
One company experiences higher efficiency in developing new variants of a frequently 
changing module, consisting of a user-interface to the product. This module was not connected 
to the central I/O board. Signals were sent to the main computer through a separated I/O board 
on the same BUS data-connection as the central I/O board. If the module had not been 
decoupled from the central I/O board the following complexity would have been introduced: 

- More variants of the central I/O (relatively expensive component) would have to be 
handled and stocked 

- The design process would be less efficient because a new layout of the central I/O board 
would have to be made 

- A relatively low selling unit would indirectly inflict design-costs on the top sellers 

Practice 2: Same modularity in software and mechanics on critical changing 
modules 

What might seem as small relatively easy-to-handle changes in mechanics or electronics might 
have big impact in the software domain. If modularity in the software domain follow the 
mechanical domain in critical areas that are highly coupled changes can be handled more 
efficiently. One company experienced that the change in the size of a nozzle had big infliction 
on the control software, because now the dose of water that passes through the nozzle over a 
certain time is changed. The control software then needed to be calibrated but since the 
modularity did not follow the logic from the mechanics domain, the impact showed in multiple 
areas of the software and was almost impossible to manage.  
Another company producing processing plants experienced most efficient start-up phases of 
new plants when the modular structure of software followed the modular structure of the 
processing plant. The big influence comes when having to tune the plants for operation. If 
certain modules of the processing plant have to be changed, then the software needs to be 
changed as well. These changes must be done as efficiently as possible, as the plant cannot run 
without the controlling software and the longer the start-up phase takes the more it costs. Similar 
modular structures in the two domains helped fastening up this phase. 



Practice 3: Adapting to cross-domain standards 
Standards for e.g. testing or certification in one domain, may affect the boundaries for modules 
in other domains. The functional testing of electrical control units was of the main drivers for 
cost and lead-time for one mass-producing company. Historically, they tested each new product 
variant on dedicated equipment. The only way to handle this challenge was to work with 
modularization across the software-, electronics-, and mechanical domains. To develop a 
generic testing procedure, and allow test-equipment standardization, a standard testing module 
had to be defined within the software domain. Within the electronic domain, the design of PCBs 
had to accommodate a standard test array located at a specific position. Finally, the mechanical 
domain had to ensure access to the PCB through a standardized interface with a fixed distance 
and orientation to the test array. Through interface standardization across the three domains, 
the company reported savings in the range of 30-40% on cost and 40-60% on lead-time for test 
of new product variants. 

Practice 4: Different scaling principles across domains 
When scaling up performance of products i.e. increasing capacity or power output, modularity 
across domains can have a significant impact on the complexity of the job. In one company 
producing process plants, the engineering department (mechanical domain) drove 
modularization efforts and thus, the scaling practices for adding extra process equipment to a 
plant, was relatively well defined. However, when adding extra processes, the integration task 
within the software- and electronic domains grew almost exponentially, as opposed to the 
mechanical domain which grew linearly, and was a significant driver of cost and quality issues 
within the company. This was because modularisation had been optimized only from the 
perspective of one engineering domain, which lead to some negative trade-offs in the other 
domains. Had the modularisation strategy been optimized across the domains the company 
would expect a more linear evolvement of the hours spend on development in software and 
electronics as the number of process steps increased for the plant, as was seen in mechanical 
development. 

Practice 5: Minimizing variance through the software domain 
More of the companies were able to reduce variance significantly in the electronics and 
mechanics domain. Demands in markets for e.g. differentiation in voltage specification could 
be handled with regulation of power supply. In this case, it meant reduction of 75% in parts and 
another company identified a possibility of reducing number of commercial variants in the order 
of 50% by controlling variance through smart software regulation. If only seen from the 
mechanical or electronic domain the company would have to introduce commercial variants for 
each regulation point in the software meaning higher inventory bindings, higher production 
investments and more production changeovers. 

5 Cross-domains architecture tool 

We have seen in four different companies that challenges related to design of modularity and 
design change exists across the domains of mechanics, electronics and software. Streamlining 
modularity across the three domains is a trade-off between development speed, costs and code 
efficiency. Electronics is often cheaper to centralize to one PCB when only considering direct 
costs. However, frequent change in the physical product might overcomplicate the design task 
with one central I/O board.  
Product changes might influence electrical signals that are handled by the software. If the 
software follows the same modular structure as the mechanics or if there exists a clear overview 



of the impact of the change in the code, design changes might be handled more efficiently going 
from the mechanics to the electronics and finally the software domain. 
In Figure 2 we present the MESA (Mechanics, Electronics and Software Architecture) tool. A 
model that helps designers visualize mechatronic product architectures with focus on 
identifying cross-domain modularity. 
Before going in detail with the tool itself we will link the five cross-domain modularity practices 
to some requirements for the tool, that have helped in the process of developing the tool. 

Link to practice 1: Central or decentral electronics 
The choice to centralize or de-centralize electronic signals is highly influenced by costs related 
to printed circuit boards. The tool should give an overview of these costs. If the tool clearly 
marked modules that are likely to be changed in the future, it would show the infliction on the 
signal handling boards (I/O boards). 
Link to practice 2: Same modularity in software and mechanics on critical changing 
modules 
The tool should visualize the relations between the mechanics/electronics and software domain, 
and when locating critical modules that are likely to be changed it will be clear how complex 
the relations from the mechanic domain into the software domain is, and thereby how aligned 
the two domains are. 

Link to practice 3: Adapting to cross-domain standards 
By highlighting modules, signals or code, that needs to follow certain standards, following all 
relations to the two other domains, could help in visualizing how this standard inflicts the other 
domains, and if harmonization to this standard across domains should be made. 

Link to practice 4: Different scaling principles across domains 
Scaling principles could be shown in mechanics in the tool by variance within modules. Then 
links, made by connecting parts/software in each domains, could give an overview of relations 
between them and give an overview of where scaling principles influence the other domains 
and how they are handled in each domain. 

Link to practice 5: Minimizing variance through the software domain 
In the tool, functional modules with variance in the mechanics domain with no relations to the 
software domain should be clearly visualized, and these are places to look for possible inclusion 
of electronic solutions with software-controlled variance instead of mechanical variance. 
 



 
Figure 2. MESA tool (Mechanics, Electronics and Architecture tool) 

Besides the modularity practices presented, the tool is inspired by the Product Family Master 
Plan (PFMP) (Harlou, 2006) and the Interface Diagram (Bruun & Mortensen, 2012). The 
mechanical platform of the product including part-variance is mapped in the structure shown in 
Figure 2 to the left in a part of/kind of structure. The idea is then to draw lines from the parts in 
the mechanical view that either sends or receives electrical signals. The PCB component-cost 
is noted for each signal and boxes illustrating which I/O board handles the signals are drawn 
over the lines. With the cost of each I/O board and cost of PCB components, the direct cost of 
de-centralizing vs centralizing can be estimated. The electrical signals are connected with the 
software code showing what part of the code handles the signal. In this representation we have 
used a state machine practice for the code which is a common methodology for making software 
to control products (Wagner, Schmuki, Wagner, & Wolstenholme, 2006). The structure of the 
state machines and programs (programs call/activate state machines) presents the architecture 
of the control code. If the modularity of the mechanics and the software follow each other, you 
will see a one-to-one mapping of relations from one module in the mechanics domains to one 
state machine or a few state machines who all handle the same functionality, depending on the 
complexity of the code. 
The function of the MESA tool is to support product developers or managers in giving an 
overview of modularity and product decisions across mechanics, software and electronics. The 
input to the model comes from all three development functions and requires a thorough analysis 
of all the variants of products sold within a product architecture (or similar products 
architectures). We propose that one person is in charge of filling in product information in the 
figure to insure consistency in modeling formalism. In addition, this person should have the 
responsibility of seeking all the product information from experts in each engineering domain. 
After making a version of the model based on the existing product programme, alternatives can 
be made to explore how the modularity can be improved across domains. 
Experience from the case companies shows that information about cost of PCB components 
can be difficult to find, especially when third party companies supply the PCBs. Therefore, this 
information may have to be a best-guess estimate, if the supplier will not deliver cost-
breakdowns of PCBs. 



6 Discussion 

As mentioned previously, existing methods and tools for developing modular product 
architectures do not explicitly deal with practices for handling modularity across mechanics, 
electronics and software. Surely, many of the methods are appropriate for developing 
mechatronic products, however without explicitly concerning cross-domain trade-offs, 
important synergies or pitfalls might be overlooked, which in the end can sacrifice company 
earnings. 
We did not solve every challenge of developing product architectures across engineering 
domains, but we have added emphasis on some modularity practices that could be relevant to 
many companies. Of course, modularity practices between other domains such as 
manufacturing or supply chain are of high importance when developing modular product 
architectures. However, work such as Fixson (2005) and Løkkegaard et al.(2018) have already 
dealt with practices in those domains, and therefore these domains are also not part of the 
MESA tool presented in this paper. 
Regarding the MESA tool, an important task is to find the right level of product breakdown. If 
the breakdown is too fine-grained, it may compromise the overview. However, the product also 
need to be broken down at such level that you can distinguish the different electrical signals 
within each module. This is something that is left to the user to evaluate. 
From the observed companies working with modularity we have covered five key practices for 
developing modularity across the three domains. The practices were deduced from both 
successful and unsuccessful cases in the companies. We do not claim they represent a complete 
list of modularity practices across the three domains. However, in the four companies studied 
in this research they represent the most important practices related to impact on lead-time and 
earnings. Further research could be made with more companies to discover other practices. 

7 Conclusion 

In this paper, we have presented five different cross-domain practices that are relevant when 
designing modular mechatronic products. The practices focus on the trade-offs between the 
domains of mechanics, electronics and software. The five practices are: 

• Central or decentral electronics 
• Same modularity in software and mechanics on critical changing modules  
• Adapting to cross-domain standards 
• Different scaling principles across domains  
• Minimizing variance through the software domain  

They were deduced by observing four different case companies that have been part of research 
projects at the section of K&P at DTU over a time span of two to three years. 
Building on the observations of modularisation practices across mechanics, electronics and 
software and methods from other scholars we have also presented the MESA tool for visualizing 
mechatronic architectures across mechanics, electronics and software. The tool is supposed to 
assist product developers on modularity decisions by giving an overview of relations between 
mechanics, electronics and software. The tool still needs testing to validate its ability to help 
practitioners to follow modularity practices across domains.  
In addition, domains such as manufacturing and supply chain might have an effect that could 
inflict with some of the modularity practices across mechanics, electronics and software. This 
did not seem to be the case in the companies observed in this paper, but it could be subject to 
further research. 
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