
NordDesign 2020
August 11-14, 2020

Kgs. Lyngby, Denmark

IDENTIFYING MODULARITY PRACTICES ACROSS
MECHANICS, ELECTRONICS AND SOFTWARE

Christoffer Askhøj1, Martin Løkkegaard1, Christian Alexander Bertram1, Niels Henrik
Mortensen1

1Technical University of Denmark

chrask@mek.dtu.dk
mloek@mek.dtu.dk
chalbe@mek.dtu.dk
nhmo@mek.dtu.dk

Abstract
In this paper we present five modularity practices across the domains of mechanics, electronics
and software deduced from observations from four companies. The practices are made to help
product developers of mechatronic products to assist in finding the most efficient modular
division of the products. Furthermore, we present a tool to assist in cross-domain modularity
decisions and to help developers follow the five cross-domain modularity practices.

Keywords: modularisation, product architecture, mechatronics

1 Introduction

For decades companies that previously were able to deliver mass produced products with little
variance have experienced an increase in both globalisation and demand for customised
products (Nadadur, Kim, Thomson, Parkinson, & Simpson, 2012; Pine, 1993). Higher demand
for variance means development of more solutions and often this is done sequentially, product-
by-product, resulting in overlapping solutions and increased complexity. At worst this leads to
costs increasing faster than turnover (M. H. Meyer & Lehnerd, 1997; Wilson & Perumal, 2009).
Modular product architectures offers a strategy to cope with increasing complexity and make
more profitable products (M. H. Meyer & Utterback, 1993; Robertson & Ulrich, 1998; Sanchez
& Collins, 2001).
In recent years, several scholars have developed methods and frameworks supporting engineers
in developing modular product architectures (de Weck, 2006; Harlou, 2006; Jung & Simpson,
2016; Krause et al., 2014; Otto et al., 2016). The methods have been used on both mechanical
and mechatronic products. However, limited focus has been on modularity practices and effects
of modularization across the domains of mechanics, electronics and software. The nature of
product development in these three engineering disciplines varies quite a lot, in the way, that
they use different supporting tools and methods. Therefore, modularity decisions in one domain
could have different and maybe negative impact in one of the other domains.

Often product development is divided into silos i.e. mechanical development, software
development, etc. Modularity efforts are then driven separate in each silo/domain, or is
dominated by the representatives of the strongest domain (Gepp, Foehr, & Vollmar, 2016;
Hehenberger, 2014). Practices for developing modularity across domains could help both
design engineers and project managers, to avoid conflicting modularity efforts. In this paper,
we presents and discuss five cross-domain practices that can help product developers when
designing and re-designing for modularity in mechatronic systems. Furthermore, we present a
new tool for mapping mechatronic product architectures to show dependencies across
mechanics, electronics and software.
The structure of the paper is as follows: First, we present the background theory and the
methodology for the research. The section "State of the art" describes the state in the literature.
Following this is the findings of cross-domain modularity practices from four companies. Then
we present a tool to assist in cross-domain modularity decisions. In the end, we discuss the
findings and finalise with a conclusion.

2 Background and methodology

In this paper we use the definition of
mechatronic products introduced by Buur
(1990): A technology, which combines
mechanics with electronics and information
technology to form both functional interaction
and spatial integration in components, modules,
products and systems. Hence, all products that
combine physical mechanical and electrical
components that are controlled by a software
code.
This research is theoretically founded in the
theory of modularisation stating that products
can be divided into functional units, called
modules, helping a company to increase
efficiencies (Marc H. Meyer, 1997; Robertson
& Ulrich, 1998; Ulrich & Eppinger, 2012). Essentially the scope of the research can be seen as
an extension of the Theory of Dispositions (TD) (Andreasen & Olesen, 1990; Olesen, 1992) in
the way that we seek to find practices that deals with effects (dispositions) of modularity
decisions taken in one engineering domain into another, see Figure 1. Modularity can be made
with different purpose (Erixon, von Yxkull, & Arnström, 1996) and different engineering
domains might have different conflicting or non-conflicting inputs to the modularisation
strategy. In this research, we cover five key modularity practices that arises when looking across
the domains.
The research is exploratory (Karlsson, 2016, Chapter 2) and have been conducted as an action
research (Karlsson, 2016, Chapter 7) where the researchers have been observing case
companies through close involvement in modularity projects.
Four companies have provided data input for the findings presented in this paper. All have been
involved in modularisation research projects with the section of Engineering Design and
Product Development (K&P) at the Technical University of Denmark (DTU) over a timespan
of two to three years. All companies have been test cases for implementing state of the art tools
and methods developed by the K&P section. In this process, the companies have provided data
for including: product drawings, sales figures, production setup, organisation structures and
cost structures. Meaning that the companies have given full access to their technical, sales and

Figure 1: Extension of Theory of
Dispositions figure from Olesen (1992)

business data directly from the source being their IT systems. Furthermore, all companies have
held weekly status meetings with one of the authors. The cross-domain modularity practices
presented in this paper are derived based on insights from these case companies.

2.1 Data input - company descriptions

The four case companies all have different market strategies and product offerings. They range
from two small to medium sized enterprises (SME), one in the configure-to-order business and
one in Engineer-to-order (ETO) business. Two large companies is included, one mass-
production and one ETO company. The products the companies produce range from large one-
of-a-kind solutions to smaller technical products, none of which is characterized as consumer
goods.
All cross-domain modularisation practices are exemplified with company cases. In all
companies, all five practices was observed to some degree, but we only included few examples
that display each practice the best.

3 State of the art

The state of the art is divided into two topics: mechatronics and modular product architectures.
This research builds on the theory of modular product architectures and therefore the review on
this topic is more extensive. The literature that deals with modular architecture development is
further divided into 5 groups: product strategy driven models, graphical methods, matrix-based
models, mathematical models and modularity frameworks. In each group, we will now discuss
how the state of the art deals with architecture development across mechanics, electronics and
software and, if any, what effects that might have.

3.1 Modular architectures

Product strategy driven models
The modular function deployment (MFD) methodology developed by Erixon et al. (1996) can
be used to systematically develop modular product design. The method does not deal with
detailed design and could be used on all sorts of products including mechatronic products as
done by Börjesson (2014). The MFD method in its essence does not explicitly deal with any
practices of modelling architectures across mechanics and electronics and Börjesson does not
directly mention modularity practices across the two domains. In its original form, the MFD
methodology does not address relations from mechanics or electronics to the software domain.

Graphical models
Graphical models like the Interface Diagram (Bruun & Mortensen, 2012) or the Product Family
Master Plan (PFMP) (Harlou, 2006) are able to address dependencies across mechanics,
electronics and software due to the abstraction level the two methods use. Using these models
on the three engineering domains of a product could give an overview of differences in
modularity. Both methods have been used on mechatronic products, but in their original form
do not address dependencies or differences across mechanics or electronics, and the software
domain have not to our knowledge been included in their use.

Matrix-based models
The most commonly used matrix-based model in relation to development of modular product
architectures would be the Design Structure Matrix (DSM) (Steward, 1981). The DSM have

been used in many different applications including mechatronic products (Alvarez Cabrera,
Komoto, Van Beek, & Tomiyama, 2014; Browning, 2016). Algorithms, such as the IGTA
algorithm (Borjesson & Hölttä-Otto, 2014), can be used to cluster DSMs and could be used on
DSMs that maps products across mechanics, electronics and software to locate modularity
synergies across the domains. A certain clustering of a DSM might not be feasible in practice
across all three domains, and the task of setting up the DSM extends excessively as the product
increase in complexity. Nor is modularity practices across the three domains explicitly
presented with DSMs.

Mathematical models
Mathematical models like De Weck's (2006) model for deciding platform extend or the method
of Schuh et al. (2017) for contextual design of modular product platforms tends to focus on
variants of commercial units within a platform or the extend of a certain platform. They do not
explicitly offer any overview of trade-offs between mechanics, electronics and software or
describe any practices between the three domains when developing product platforms.

Modularity frameworks
Platform-based frameworks for developing product platforms like the PKT-approach (Krause
et al., 2014), the AME (Architecture Mapping and Evaluation) framework (Mortensen, Hansen,
Løkkegaard, & Hvam, 2016) or the 13 steps for developing a platform concept by Otto et al.
(2016) can be used across engineering domains, and probably should go across domains when
developing mechatronic products. However, none of them explicitly covers modularity
practices that arise when looking across the three domains discussed herein, nor offer any
formal visualisation practices of dependencies across all three domains.

3.2 Mechatronics

Researchers have provided many tools and frameworks for aligning the product development
process across the mechanics, electronics and software domains when developing mechatronic
products (De Silva, 2005). Welp and Jansen (2004) presented a method for the domain
allocation of the functions of products and Hehenberger (2014) gave an overview of a
hierarchical process representing different disciplines for the design of mechatronic products.
They focus on single product development and not explicitly families of products. Alvares
Cabrera et al. (2011) introduced a model, method and tool implementation supporting a
corporative design process with exchange of information between domains, but focus more on
knowledge management processes than the product development process.
Some researchers have been focusing on modularity within mechatronic products. Schuh et al.
(2019) and Schuh et al. (2016) developed methods for designing mechatronic modules based
on principles from axiomatic design. They set up axiomatic equations for defining module
extend (how much variance can a module cover) and present a four step method for designing
mechatronic modules. Their work focus primarily on the development on single modules.
Weyrich et al. (2011) presented an approach using DSMs (Design structure matrix) for
developing so called solution neutral mechatronic modules that can be used across solutions.
However, they do not focus on complete system design.

3.3 State of the art conclusion

No scholars have explicitly presented key practices for modelling product platforms across
mechanics, electronics and software. Knowledge of pitfalls and good modularity practices
across the domains might be beneficial knowledge when using existing methods, as most
products are designed across domains.

Contributions within the field of mechatronic product development, either focus on the process
of sharing knowledge between domains or on single products or modules. We see a gap in
methods or tools to support product developers when designing modular products on a portfolio
level explicitly addressing cross-domain modularity.

4 Cross-domain modularity practices

The five practices presented in this paper were derived from insights from four case companies.
They describe some fundamental challenges to consider when working with modularity across
domains. However, due to the nature of the research and limitations of the study, more practices
might exist. We now present the five cross-domain modularity practices.

Practice 1: Central or decentral electronics
Division into modules does not always follow the same logic in the electronics domain as in
mechanics. Electrical signals are often collected into one central PCB (Printed Circuit Board),
a so-called I/O board. This means that if an electrical signal from one functional module in the
mechanics domain change, the I/O board have to be revised, which again means that an
infliction with other modules' design is made. The driver for collecting the signals is cost, but
modules that change frequently, might be worth decoupling from the rest, so they can be revised
independently. If these modules are not decoupled, development might become slow and an
excessive number of variants of these relatively complex components (I/O boards) must be
handled.
One company experiences higher efficiency in developing new variants of a frequently
changing module, consisting of a user-interface to the product. This module was not connected
to the central I/O board. Signals were sent to the main computer through a separated I/O board
on the same BUS data-connection as the central I/O board. If the module had not been
decoupled from the central I/O board the following complexity would have been introduced:

- More variants of the central I/O (relatively expensive component) would have to be
handled and stocked

- The design process would be less efficient because a new layout of the central I/O board
would have to be made

- A relatively low selling unit would indirectly inflict design-costs on the top sellers

Practice 2: Same modularity in software and mechanics on critical changing
modules

What might seem as small relatively easy-to-handle changes in mechanics or electronics might
have big impact in the software domain. If modularity in the software domain follow the
mechanical domain in critical areas that are highly coupled changes can be handled more
efficiently. One company experienced that the change in the size of a nozzle had big infliction
on the control software, because now the dose of water that passes through the nozzle over a
certain time is changed. The control software then needed to be calibrated but since the
modularity did not follow the logic from the mechanics domain, the impact showed in multiple
areas of the software and was almost impossible to manage.
Another company producing processing plants experienced most efficient start-up phases of
new plants when the modular structure of software followed the modular structure of the
processing plant. The big influence comes when having to tune the plants for operation. If
certain modules of the processing plant have to be changed, then the software needs to be
changed as well. These changes must be done as efficiently as possible, as the plant cannot run
without the controlling software and the longer the start-up phase takes the more it costs. Similar
modular structures in the two domains helped fastening up this phase.

Practice 3: Adapting to cross-domain standards
Standards for e.g. testing or certification in one domain, may affect the boundaries for modules
in other domains. The functional testing of electrical control units was of the main drivers for
cost and lead-time for one mass-producing company. Historically, they tested each new product
variant on dedicated equipment. The only way to handle this challenge was to work with
modularization across the software-, electronics-, and mechanical domains. To develop a
generic testing procedure, and allow test-equipment standardization, a standard testing module
had to be defined within the software domain. Within the electronic domain, the design of PCBs
had to accommodate a standard test array located at a specific position. Finally, the mechanical
domain had to ensure access to the PCB through a standardized interface with a fixed distance
and orientation to the test array. Through interface standardization across the three domains,
the company reported savings in the range of 30-40% on cost and 40-60% on lead-time for test
of new product variants.

Practice 4: Different scaling principles across domains
When scaling up performance of products i.e. increasing capacity or power output, modularity
across domains can have a significant impact on the complexity of the job. In one company
producing process plants, the engineering department (mechanical domain) drove
modularization efforts and thus, the scaling practices for adding extra process equipment to a
plant, was relatively well defined. However, when adding extra processes, the integration task
within the software- and electronic domains grew almost exponentially, as opposed to the
mechanical domain which grew linearly, and was a significant driver of cost and quality issues
within the company. This was because modularisation had been optimized only from the
perspective of one engineering domain, which lead to some negative trade-offs in the other
domains. Had the modularisation strategy been optimized across the domains the company
would expect a more linear evolvement of the hours spend on development in software and
electronics as the number of process steps increased for the plant, as was seen in mechanical
development.

Practice 5: Minimizing variance through the software domain
More of the companies were able to reduce variance significantly in the electronics and
mechanics domain. Demands in markets for e.g. differentiation in voltage specification could
be handled with regulation of power supply. In this case, it meant reduction of 75% in parts and
another company identified a possibility of reducing number of commercial variants in the order
of 50% by controlling variance through smart software regulation. If only seen from the
mechanical or electronic domain the company would have to introduce commercial variants for
each regulation point in the software meaning higher inventory bindings, higher production
investments and more production changeovers.

5 Cross-domains architecture tool

We have seen in four different companies that challenges related to design of modularity and
design change exists across the domains of mechanics, electronics and software. Streamlining
modularity across the three domains is a trade-off between development speed, costs and code
efficiency. Electronics is often cheaper to centralize to one PCB when only considering direct
costs. However, frequent change in the physical product might overcomplicate the design task
with one central I/O board.
Product changes might influence electrical signals that are handled by the software. If the
software follows the same modular structure as the mechanics or if there exists a clear overview

of the impact of the change in the code, design changes might be handled more efficiently going
from the mechanics to the electronics and finally the software domain.
In Figure 2 we present the MESA (Mechanics, Electronics and Software Architecture) tool. A
model that helps designers visualize mechatronic product architectures with focus on
identifying cross-domain modularity.
Before going in detail with the tool itself we will link the five cross-domain modularity practices
to some requirements for the tool, that have helped in the process of developing the tool.

Link to practice 1: Central or decentral electronics
The choice to centralize or de-centralize electronic signals is highly influenced by costs related
to printed circuit boards. The tool should give an overview of these costs. If the tool clearly
marked modules that are likely to be changed in the future, it would show the infliction on the
signal handling boards (I/O boards).
Link to practice 2: Same modularity in software and mechanics on critical changing
modules
The tool should visualize the relations between the mechanics/electronics and software domain,
and when locating critical modules that are likely to be changed it will be clear how complex
the relations from the mechanic domain into the software domain is, and thereby how aligned
the two domains are.

Link to practice 3: Adapting to cross-domain standards
By highlighting modules, signals or code, that needs to follow certain standards, following all
relations to the two other domains, could help in visualizing how this standard inflicts the other
domains, and if harmonization to this standard across domains should be made.

Link to practice 4: Different scaling principles across domains
Scaling principles could be shown in mechanics in the tool by variance within modules. Then
links, made by connecting parts/software in each domains, could give an overview of relations
between them and give an overview of where scaling principles influence the other domains
and how they are handled in each domain.

Link to practice 5: Minimizing variance through the software domain
In the tool, functional modules with variance in the mechanics domain with no relations to the
software domain should be clearly visualized, and these are places to look for possible inclusion
of electronic solutions with software-controlled variance instead of mechanical variance.

Figure 2. MESA tool (Mechanics, Electronics and Architecture tool)

Besides the modularity practices presented, the tool is inspired by the Product Family Master
Plan (PFMP) (Harlou, 2006) and the Interface Diagram (Bruun & Mortensen, 2012). The
mechanical platform of the product including part-variance is mapped in the structure shown in
Figure 2 to the left in a part of/kind of structure. The idea is then to draw lines from the parts in
the mechanical view that either sends or receives electrical signals. The PCB component-cost
is noted for each signal and boxes illustrating which I/O board handles the signals are drawn
over the lines. With the cost of each I/O board and cost of PCB components, the direct cost of
de-centralizing vs centralizing can be estimated. The electrical signals are connected with the
software code showing what part of the code handles the signal. In this representation we have
used a state machine practice for the code which is a common methodology for making software
to control products (Wagner, Schmuki, Wagner, & Wolstenholme, 2006). The structure of the
state machines and programs (programs call/activate state machines) presents the architecture
of the control code. If the modularity of the mechanics and the software follow each other, you
will see a one-to-one mapping of relations from one module in the mechanics domains to one
state machine or a few state machines who all handle the same functionality, depending on the
complexity of the code.
The function of the MESA tool is to support product developers or managers in giving an
overview of modularity and product decisions across mechanics, software and electronics. The
input to the model comes from all three development functions and requires a thorough analysis
of all the variants of products sold within a product architecture (or similar products
architectures). We propose that one person is in charge of filling in product information in the
figure to insure consistency in modeling formalism. In addition, this person should have the
responsibility of seeking all the product information from experts in each engineering domain.
After making a version of the model based on the existing product programme, alternatives can
be made to explore how the modularity can be improved across domains.
Experience from the case companies shows that information about cost of PCB components
can be difficult to find, especially when third party companies supply the PCBs. Therefore, this
information may have to be a best-guess estimate, if the supplier will not deliver cost-
breakdowns of PCBs.

6 Discussion

As mentioned previously, existing methods and tools for developing modular product
architectures do not explicitly deal with practices for handling modularity across mechanics,
electronics and software. Surely, many of the methods are appropriate for developing
mechatronic products, however without explicitly concerning cross-domain trade-offs,
important synergies or pitfalls might be overlooked, which in the end can sacrifice company
earnings.
We did not solve every challenge of developing product architectures across engineering
domains, but we have added emphasis on some modularity practices that could be relevant to
many companies. Of course, modularity practices between other domains such as
manufacturing or supply chain are of high importance when developing modular product
architectures. However, work such as Fixson (2005) and Løkkegaard et al.(2018) have already
dealt with practices in those domains, and therefore these domains are also not part of the
MESA tool presented in this paper.
Regarding the MESA tool, an important task is to find the right level of product breakdown. If
the breakdown is too fine-grained, it may compromise the overview. However, the product also
need to be broken down at such level that you can distinguish the different electrical signals
within each module. This is something that is left to the user to evaluate.
From the observed companies working with modularity we have covered five key practices for
developing modularity across the three domains. The practices were deduced from both
successful and unsuccessful cases in the companies. We do not claim they represent a complete
list of modularity practices across the three domains. However, in the four companies studied
in this research they represent the most important practices related to impact on lead-time and
earnings. Further research could be made with more companies to discover other practices.

7 Conclusion

In this paper, we have presented five different cross-domain practices that are relevant when
designing modular mechatronic products. The practices focus on the trade-offs between the
domains of mechanics, electronics and software. The five practices are:

• Central or decentral electronics
• Same modularity in software and mechanics on critical changing modules
• Adapting to cross-domain standards
• Different scaling principles across domains
• Minimizing variance through the software domain

They were deduced by observing four different case companies that have been part of research
projects at the section of K&P at DTU over a time span of two to three years.
Building on the observations of modularisation practices across mechanics, electronics and
software and methods from other scholars we have also presented the MESA tool for visualizing
mechatronic architectures across mechanics, electronics and software. The tool is supposed to
assist product developers on modularity decisions by giving an overview of relations between
mechanics, electronics and software. The tool still needs testing to validate its ability to help
practitioners to follow modularity practices across domains.
In addition, domains such as manufacturing and supply chain might have an effect that could
inflict with some of the modularity practices across mechanics, electronics and software. This
did not seem to be the case in the companies observed in this paper, but it could be subject to
further research.

References
Alvarez Cabrera, A. A., Komoto, H., Van Beek, T. J., & Tomiyama, T. (2014). Architecture-

centric design approach for multidisciplinary product development. In Advances in
Product Family and Product Platform Design: Methods and Applications (pp. 419–447).
Springer New York. https://doi.org/10.1007/978-1-4614-7937-6_17

Alvarez Cabrera, A. A., Woestenenk, K., & Tomiyama, T. (2011). An architecture model to
support cooperative design for mechatronic products: A control design case.
Mechatronics, 21(3), 534–547. https://doi.org/10.1016/j.mechatronics.2011.01.009

Andreasen, M. M., & Olesen, J. (1990). The Concept of Disposition. Journal of Engineering
Design, 1(1).

Börjesson, F. (2014). Modular Function Deployment Applied to a Cordless Handheld Vacuum.
In Advances in Product Family and Product Platform Design (pp. 605–623). New York,
NY: Springer New York. https://doi.org/10.1007/978-1-4614-7937-6_24

Borjesson, F., & Hölttä-Otto, K. (2014). A module generation algorithm for product
architecture based on component interactions and strategic drivers. Research in
Engineering Design, 25(1), 31–51. https://doi.org/10.1007/s00163-013-0164-2

Browning, T. R. (2016). Design Structure Matrix Extensions and Innovations: A Survey and
New Opportunities. IEEE Transactions on Engineering Management, 63(1), 27–52.
https://doi.org/10.1109/TEM.2015.2491283

Bruun, H. P. L., & Mortensen, N. H. (2012). Visual product architecture modelling for
structuring data in a PLM system. IFIP AICT - Advances in Information and
Communication Technology, 388, 598–611. https://doi.org/10.1007/978-3-642-35758-9

Buur, J. (1990). A theoretical approach to mechatronics design. Technical University of
Denmark.

De Silva, C. W. (2005). Mechatronics : an integrated approach. CRC Press.
de Weck, O. L. (2006). Determining Product Platform Extent. In Product Platform and Product

Family Design (pp. 241–301). New York, NY: Springer US. https://doi.org/10.1007/0-
387-29197-0_12

Erixon, G., von Yxkull, A., & Arnström, A. (1996). Modularity – the Basis for Product and
Factory Reengineering. CIRP Annals, 45(1), 1–6. https://doi.org/10.1016/S0007-
8506(07)63005-4

Fixson, S. K. (2005). Product architecture assessment: a tool to link product, process, and
supply chain design decisions. Journal of Operations Management, 23(3–4), 345–369.
https://doi.org/10.1016/j.jom.2004.08.006

Gepp, M., Foehr, M., & Vollmar, J. (2016). Standardization, modularization and platform
approaches in the engineer-to-order business Review and outlook. In IEEE (Ed.), 2016
Annual Ieee Systems Conference (syscon) (pp. 237–242).

Harlou, U. (2006). Developing product families based on architectures : contribution to a
theory of product families. Department of Mechanical Engineering, Technical University
of Denmark.

Hehenberger, P. (2014). Perspectives on hierarchical modeling in mechatronic design.
Advanced Engineering Informatics, 28(3), 188–197.
https://doi.org/10.1016/j.aei.2014.06.005

Jung, S., & Simpson, T. W. (2016). An integrated approach to product family redesign using
commonality and variety metrics. Research in Engineering Design, 27(4), 391–412.
https://doi.org/10.1007/s00163-016-0224-5

Karlsson, C. (2016). Research methods for operations management. Routledge.
Krause, D., Beckmann, G., Eilmus, S., Gebhardt, N., Jonas, H., & Rettberg, R. (2014).

Integrated Development of Modular Product Families: A Methods Toolkit. In Advances
in Product Family and Product Platform Design (pp. 245–269). New York, NY: Springer

New York. https://doi.org/10.1007/978-1-4614-7937-6_10
Løkkegaard, M., Mortensen, N. H., & Hvam, L. (2018). Using business critical design rules to

frame new architecture introduction in multi-architecture portfolios. International Journal
of Production Research, 56(24), 7313–7329.
https://doi.org/10.1080/00207543.2018.1450531

Meyer, M. H., & Lehnerd, A. P. (1997). The power of product platforms : building value and
cost leadership. Free Press.

Meyer, M. H., & Utterback, J. (1993). The product family and the dynamics of core capability.
Sloan Management Review, 34(3), 29–47.

Meyer, Marc H. (1997). Revitalize your product lines through continuous platform renewal.
Research Technology Management, 40(2), 17–28.
https://doi.org/10.1080/08956308.1997.11671113

Mortensen, N. H., Hansen, C. L., Løkkegaard, M., & Hvam, L. (2016). Assessing the cost
saving potential of shared product architectures. Concurrent Engineering Research and
Applications, 24(2), 153–163. https://doi.org/10.1177/1063293X15624133

Nadadur, G., Kim, W., Thomson, A. R., Parkinson, M. B., & Simpson, T. W. (2012). Strategic
Product Design for Multiple Global Markets. In Volume 7: 9th International Conference
on Design Education; 24th International Conference on Design Theory and Methodology
(Vol. 7, pp. 837–848). American Society of Mechanical Engineers.
https://doi.org/10.1115/DETC2012-70723

Olesen, J. (1992). Concurrent development in manufacturing : based on dispositional
mechanisms. Technical University of Denmark.

Otto, K. N., Hölttä-Otto, K., Simpson, T. W., Krause, D., Ripperda, S., & Ki Moon, S. (2016).
Global Views on Modular Design Research: Linking Alternative Methods to Support
Modular Product Family Concept Development. Journal of Mechanical Design, 138(7),
071101 1-16. https://doi.org/10.1115/1.4033654

Pine, B. (1993). Mass Customization - The New Frontier in Business Competition. Harvard
Business School Press.

Robertson, D., & Ulrich, K. T. (1998). Planning for product platforms. Sloan Management
Review, 39(4), 19–31.

Sanchez, R., & Collins, R. P. (2001). Competing - and learning - in modular markets. Long
Range Planning, 34(6), 645–667. https://doi.org/10.1016/S0024-6301(01)00099-1

Schuh, G., Dölle, C., Barg, S., Kuhn, M., & Breunig, S. (2019). Efficient Modular Product
Platform Design of Mechatronic Systems. In IEEE International Conference on Industrial
Engineering and Engineering Management (Vol. 2019-Decem, pp. 1391–1395). IEEE
Computer Society. https://doi.org/10.1109/IEEM.2018.8607714

Schuh, G., Riesener, M., Barg, S., & Lauf, H. (2017). Methodology for the contextual design
of a modular product platform concept. In 21ST INTERNATIONAL CONFERENCE ON
ENGINEERING DESIGN, ICED17 (Vol. 3, pp. 1–10). the Design Society.

Schuh, Guenther, Rudolf, S., & Breunig, S. (2016). Modular Platform Design for Mechatronic
Systems using Axiomatic Design and Mechatronic Function Modules. In Procedia CIRP
(Vol. 50, pp. 701–706). Elsevier B.V. https://doi.org/10.1016/j.procir.2016.05.035

Steward, D. V. (1981). DESIGN STRUCTURE SYSTEM: A METHOD FOR MANAGING
THE DESIGN OF COMPLEX SYSTEMS. IEEE Transactions on Engineering
Management, EM-28(3), 71–74. https://doi.org/10.1109/TEM.1981.6448589

Ulrich, K. T., & Eppinger, S. D. (2012). Product design and development. McGraw-Hill/Irwin.
Wagner, F., Schmuki, R., Wagner, T., & Wolstenholme, P. (2006). Modeling software with

finite state machines: A practical approach. Modeling Software with Finite State
Machines: A Practical Approach. CRC Press. https://doi.org/10.1201/9781420013641

Welp, E. G., & Jansen, S. (2004). Domain allocation in mechatronic products. In Design 2004:

Proceedings of the 8th International Design Conference (pp. 1349–1354).
Weyrich, M., Klein, P., Laurowski, M., & Wang, Y. (2011). A function-oriented approach for

a mechtronic Modularization of a sensor-guided Manufacturing System.
Wilson, S., & Perumal, A. (2009). Waging war on complexity costs. McGraw-Hill Education.

https://doi.org/10.1038/nsmb.3375

