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Abstract: This paper considers three different modes of design work that is 

distributed over several design parties: independent design (in parallel, no design 

interactions, sub-system requirements), dependent design (sequential, one-way 

design interactions, updated sub-system requirements) and interdependent design (in 

parallel or sequential, two-way design interactions, only system requirements). Each 

mode requires particular coordination strategies to be successful. One coordination 

strategy is based on requirement formulation: Both system and sub-system 

requirements are expressed as so-called solution spaces. Solution spaces represent 

sets of permissible designs where sub-system (or component) solution spaces can be 

deduced from the system solution space. The larger the size of a sub-system solution 

space, the more options for sub-system design decisions satisfying the overall system 

requirements exist and thus the larger the design flexibility. The three modes are 

applied to two industrial design problems and evaluated with respect to total 

flexibility and cost related to iteration steps, interactions between the design parties 

and requirement formulation. The resulting framework is applicable to general 

systems design problems. 

Keywords: Systems Design, Process Architecture, Solution Spaces, Concurrent 

Design 

1 Introduction 

A goal in systems engineering is to break down complexity of the design process in order 

to simplify, to accelerate, and to reduce costs. The literature on decomposition strategies is 

extensive. However, it is often descriptive and cumbersome to apply to mathematical 

design models. In this field, “decomposition-based design optimization”, within 
“multidisciplinary design optimization”, in which a systems design problem is usually 
decomposed into separate design problems, is predominant, see (Papalambros and Wilde, 

2017). Unfortunately, this is often associated with tight component targets with little 

tolerance resulting in little robustness and design flexibility. For the purpose of this paper, 

flexibility refers to the number (or the size of the set) of design options that satisfy the 

overall system requirements. 

This can be alleviated using a design approach based on solution spaces. The key idea of 

this approach is to consider a set of permissible system designs from which quantitative, 

least restrictive subsystem requirements can be derived instead of searching for a single, 

optimal system design in the first place. Here, flexibility can be provided for design work 

done in parallel, see (Daub et al., 2020; Zimmermann and Hoessle, 2013), or done 
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sequentially, see (Funk et al., 2019; Vogt et al., 2018). By using these methods, also no 

iterations on the subsystem design decisions are required if the underlying design model is 

accurate enough. For some problems however, flexibility might still be small and coupled 

design decisions, which allow iterations combined with interactions between the designers, 

would be preferable in order to increase design flexibility. This raises the question of how 

to choose and sequence the different types of design decisions for an optimal process 

architecture. 

In this paper, this question is addressed. Therefore, a review on systems design based on 

solution spaces for the different types of design decisions is presented in Section 2. Then, 

fundamentals for the assessments of a solution-space based design process are discussed 

and a framework to yield an optimal process architecture is proposed in Section 3. It is 

applied to problems from the automotive industry, vehicle crash design and battery pack 

design, before this paper is concluded in Section 4. 

2 Systems Design using Solution Spaces 

2.1 Definitions 

The focus is put on systems design with mathematical design models and continuous design 

variables. Here, there are   independent design variables 𝑥𝑖 ∈ ℝ, which are collected in 𝒙 = (𝑥 , … , 𝑥𝑑). The vector 𝒙 ∈ ℝ𝑑 contains all relevant design variables and is named a 

system design. In general, the design variable values can be selected, or at least be 

controlled, by one or multiple designers. The minimum values which can be chosen for 𝑥𝑖 
are denoted by 𝑥ds,𝑖l  and the maximum values by 𝑥ds,𝑖u , i.e., 𝑥𝑖 ∈ [𝑥ds,𝑖l , 𝑥ds,𝑖u ], 𝑖 = 1,… ,  . 

These bounds form the system design space Ωds ⊂ ℝ𝑑 with 

 Ωds = [𝑥ds, l , 𝑥ds, u ] × ⋯× [𝑥ds,𝑑l , 𝑥ds,𝑑u ].     (1) 

For a given design model, each system design 𝒙 ∈ Ωds is associated with specific system 

responses. Hence, system responses 𝑧𝑗 ∈ ℝ can be represented as images of a system design 𝒙 by system performance functions 𝑓𝑗, 𝑗 = 1,… ,𝑚, where 𝑚 denotes the number of 

relevant system responses. It holds 𝑓𝑗: ℝ𝑑 →  ℝ, 𝒙 ↦ 𝑧𝑗 = 𝑓𝑗(𝒙).      (2) 

There are requirements on the system responses which must be fulfilled by a system design 

in order to be permissible. These are formulated as upper threshold values 𝑓c,𝑗. Note that 

every lower threshold can be transformed into an upper threshold by multiplying both the 

corresponding system performance function and the lower threshold with -1. The set of all 

permissible system designs 𝒙 is called complete system solution space Ωc ⊂ ℝ𝑑 with Ωc = {𝒙 ∈ Ωds | 𝑓𝑗(𝒙) ≤ 𝑓c,𝑗 , 𝑗 = 1, … ,𝑚}.     (3) 

2.2 Independent, Dependent, and Interdependent Design Decisions 

In this paper, a distributed design process in which each one designer is responsible for 

specifying the value for one design variable is considered. This can be extended to 
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situations in which the design variables are grouped as components and component 

designers are responsible for selecting their associated design variable values, see (Daub 

et al., 2020; Daub, 2020). Between two designers, there are three different types for the 

flow of information about their selected design variable values: No flow of information for 

independent design decisions (Mode 1), one-way flow of information for dependent design 

decisions (Mode 2), and two-way flow of information for interdependent design decisions 

(Mode 3), see (Pimmler and Eppinger, 1994). They are visualized in Fig. 1. 

 

Figure 1. Independent, dependent and coupled design decisions between two designers. 

In the following, it is presented how the three modes can be used in the framework of 

flexible designing based on solution spaces where the system requirements must be 

fulfilled. For reasons of simplicity, only purely independent, dependent, or interdependent 

design decisions are considered in this subsection. In the next section, an optimal 

sequencing of the design work is discussed.  

Independent design decisions can be done in parallel, i.e., simultaneously. This can be 

understood as a concurrent engineering approach. For a flexible and independent design 

process, independent intervals [𝑥𝑖l, 𝑥𝑖u  , in which designer 𝑖 must select the values of 𝑥𝑖 , 
are required. Furthermore, the Cartesian product of these intervals must be a subset of the 

complete solution space in order to guarantee a permissible system design, meaning 

 [𝑥 l , 𝑥 u] × ⋯ × [𝑥𝑑l , 𝑥𝑑u] ⊆ Ωc.      (4) 

In general, there are various intervals [𝑥𝑖l, 𝑥𝑖u  , 𝑖 = 1,… ,  , which fulfill Eq. (4). Among 

them, the ones that provide the most design flexibility are usually preferred. This flexibility 

is quantified, e.g., as the volume of the Cartesian product in (Zimmermann and Hoessle, 

2013), or as the minimum interval length in (Fender et al., 2016). An approach that also 

considers different uncertainty magnitudes of the design variables is presented in (Daub 

and Duddeck, 2019). 

Dependent design decisions are taken sequentially, what can be understood as a traditional 

or over-the-wall engineering approach. Assuming a consecutive ordering of the design 

decisions according to their indices, the required interval [𝑥𝑖l, 𝑥𝑖u  , in which designer 𝑖 must 

select the values of 𝑥𝑖, depend on the first 𝑖  1 design decisions. Moreover, the interval 

[𝑥𝑖l, 𝑥𝑖u   must be a subset of the projection along the 𝑖th coordinate axis of the updated 

Mode 2a Mode 3 Mode 2b Mode 1 

Flow of 

information 
Designer 1 

selects 𝑥  
Designer 2 

selects 𝑥  
independent dependent 

Designer 1 

selects 𝑥  
Designer 2 

selects 𝑥  
interdependent 

Designer 1 

selects 𝑥  
Designer 2 

selects 𝑥  

Designer 1 

selects 𝑥  
Designer 2 

selects 𝑥  



Part I: Process Architectures 

16   DSM 2020 

complete system solution space Ωc(𝑥 , … , 𝑥𝑖− ), in order to guarantee a permissible system 

design regardless of the decision for 𝑥𝑖 ∈  𝑥𝑖l, 𝑥𝑖u  , i.e., [𝑥𝑖l, 𝑥𝑖u] ⊆ proj𝑖  (Ωc(𝑥 , … , 𝑥𝑖− )).      (5) 

Again, there are various intervals which fulfill Eq. (5), and among them, maximum 

flexibility is preferred. If flexibility is quantified as the volume, which corresponds to the 

interval length here, [𝑥𝑖l, 𝑥𝑖u   is defined by using an equal sign in Eq. (5) if Ωc is connected. 

However, other approaches are also conceivable, e.g., when different uncertainty 

magnitudes of the design variables are considered, see (Daub, 2020). 

In contrast to independent and dependent design decisions, interdependent design decisions 

allow each designer to adapt their selection for the design variable values in dependence of 

the selection of the other designers. In theory, this may result in arbitrarily many iterations 

for the system design. This can be seen as a series of single or parallel design decisions in 

which every design variable occurs more than once, see (Devendorf and Lewis, 2011). The 

iterations can terminate if the updated system design is permissible.  

3 Optimal Architecture for a Solution-Space-Based Design Process 

3.1 Problem Statement 

There are various decomposition strategies which sequence independent, dependent, and 

interdependent design decisions for a solution-space-based design process. In the 

following, such a decomposition strategy is denoted by 𝐷 ∈ {𝐷 , … , 𝐷𝑛ps}, where 𝑛ps 

denotes the number of possible strategies. If a system design consists of two design 

variables for example, there are four possible strategies which are closely related to the 

design modes shown in Fig. 1: Designer 1 and designer 2 design independently (𝐷 , mode 

1), dependently where either designer 1 (𝐷 , mode 2a) or 2 (𝐷 , mode 2b) starts, or 

interdependently (𝐷 , mode 3). The number of strategies 𝑛s increases rapidly with the 

number of design variables. In Fig. 2, an example for 𝐷 to obtain a system design with 

eight design variables is visualized. 

  

Figure 2. Example to for a decomposition strategy to sequence eight design decisions. 
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In addition to a decomposition strategy, a flexibility strategy 𝐹 for optimizing the intervals 

[𝑥𝑖l, 𝑥𝑖u  , 𝑖 = 1,… ,  , of a solution-space based design process is required. This can for 

example be done by combining the flexibility measures from above. Overall, a design 

process that depends on both the decomposition and the flexibility strategy is obtained. As 

there are usually reasons or preferences for a specific flexibility strategy 𝐹, like using the 

volume as a natural flexibility measure, the focus is placed on finding an optimal 

decomposition strategy 𝐷 for given flexibility strategy 𝐹. Here, the subsequent framework 

is proposed: 

1. Determine the feasible decomposition strategies: Due to the rapidly growing 

number of decomposition strategies, with the number of design variables, not all of 

the strategies for a solution-space-based design process should be assessed. This is 

often not even necessary as the organizational structure with different designers may 

not allow to access the full spectrum of strategies. For example, it can be preferable 

that designer 1 starts designing if he is required in another project soon, or it might be 

difficult for designers to design interdependently due to a complicated communication 

infrastructure. The remaining, feasible decomposition strategies are collected in {𝐷 , … , 𝐷𝑛fs}, where 𝑛fs denotes their number with 𝑛fs ≤ 𝑛ps. 

2. Define assessment criteria for the decomposition strategies: In order to assess the 

feasible decomposition strategies for a design process with a given flexibility strategy, 

one or multiple assessment criteria must be defined. In this paper, the (total) design 

flexibility 𝜇(𝐷, 𝐹), for which a large value is desired, and the process cost 𝐶(𝐷), for 

which a small value is desired, are taken into account. As these two measures should 

be defined with respect to the specific application in general, no specific definitions 

are provided here. As an example, the total design flexibility can be measured for 

example by the average, minimum, or maximum flexibility provided by 𝐹. The 

quantification of the process cost can be understood more general, for which, e.g., the 

considerations from the first step can be extended. Furthermore, it is also conceivable 

to quantify the involved design modes in terms of design flexibility and process cost 

directly, see the example in the next subsection. Usually, independent decisions are 

characterized by small flexibility and small cost, dependent design decisions by 

medium flexibility and medium cost, and interdependent decisions by large flexibility 

and large cost. 

3. Choose an optimal, feasible decomposition strategy: For 𝑛fs  1, it is necessary to 

assess the feasible decomposition strategies in terms of total design flexibility and 

process cost to choose an optimal decomposition strategy. As two assessment criteria 

are involved here, the goal becomes to find a Pareto optimal, feasible decomposition 

strategy that maximizes 𝜇(𝐷, 𝐹) and minimizes 𝐶(𝐷). 

In the following, the framework is applied to two simple vehicle design problems, one from 

the field of crash design and the other one from the field of battery pack design. 
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3.2 Application to Industrial Examples 

(a) Crash design problem, from (Zimmermann and Hoessle, 2013) 

The problem of designing a vehicle front structure to account for a front crash load case 

against a rigid wall at full overlap is considered, see Fig. 3(a). Here, the structure is modeled 

as two sections with deformation lengths 𝑠  and 𝑠 . For each section, it is assumed that 

there is a constant force which is necessary to deform this section, and which can be 

specified by the designer. This means that there are two designers responsible for two 

design variables, 𝐹  and 𝐹 . In order for a system design to be permissible, it must fulfill 

requirements regarding the energy absorption, maximum acceleration, and the order of 

deformation, i.e.,  𝑠 𝐹  𝑠 𝐹 ≤    𝑚𝑣0; 𝐹 , 𝐹 ≤ 𝑚𝑎c; 𝐹  𝐹 ≤ 0,   (6-8) 

where 𝑚 is the vehicle mass, 𝑣0 the initial velocity, and 𝑎c is the critical acceleration. The 

design space is set as Ωds =  0N, 500kN ×  0kN, 500kN , and the parameters as 𝑠 =𝑠 = 0.3 , 𝑚 = 1500kg, 𝑣0 = 15. ms , 𝑎c = 300 ms , cf. (Daub et al., 2020). 

(b) Battery pack design problem, simplified from (Wöhr et al., 2020) 

The problem of designing a vehicle battery pack, consisting of a thermal cooling system 

and a battery system, is considered, see Fig. 3(b). Here, it is assumed that each the 

mechanical power of the thermal cooling system 𝑃  and the electrical power of the battery 

system 𝑃  can be specified by the designer. This means that there are two designers 

responsible for two design variables, again. In order for a system design to be permissible, 

it must fulfill two requirements regarding the power difference, i.e.,  𝑃  𝑃 ≤ 𝑃cu; 𝑃  𝑃 ≤  𝑃cl,      (9) 

where 𝑃u is the critical upper power limit and 𝑃l is the critical lower power limit. The 

design space is set as Ωds =  0N, 200kW ×  0kN, 500kW , and the power limits as 𝑃cl =150kW and 𝑃cl = 200kW, cf. (Wöhr et al., 2020). 

 
Figure 3. Vehicle crash design problem (a) and battery pack design problem (b). 
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As both the vehicle crash design problem and battery pack design problem have two design 

variables, there are four possible decomposition strategies 𝐷 , … , 𝐷  for each problem, see 

above. As above, 𝐷  represents independent design decisions (mode 1), 𝐷  and 𝐷  

represent dependent design decisions (mode 2a and 2b), and 𝐷  represents interdependent 

design decisions (mode 3). All are considered as feasible here. Moreover, the same 

flexibility strategy 𝐹 is considered for the two problems: the volume of [𝑥 l , 𝑥 u] × [𝑥 l , 𝑥 u] 
is maximized for independent design decisions, and [𝑥𝑖l, 𝑥𝑖u] = proj𝑖  (Ωc) is set for the first 

decision for dependent design decisions. In order to assess the total design flexibility 𝜇(𝐷, 𝐹) for the different decomposition strategies, the volume of the set of system designs 

that can be realized is used. It is defined as 

𝜇(𝐷, 𝐹) = {vol([𝑥 l , 𝑥 u] × [𝑥 l , 𝑥 u]) for 𝐷 ,            vol(Ωc) for 𝐷 , 𝐷 , 𝐷     (10) 

In Fig. 4, maximum-volume inner boxes [𝑥 l , 𝑥 u] × [𝑥 l , 𝑥 u] are visualized along with the 

complete system solution space Ωc. In addition, minimum outer boxes that represent [𝑥𝑖l, 𝑥𝑖u] = proj𝑖  (Ωc) via proj  (Ωc) × proj  (Ωc) are shown. 

 

Figure 4. Complete system solution space (white) and system design space (blue) including 

maximum-volume inner boxes and minimum outer boxes (gray bounds) for problem (a) and (b). 

In order to assess the process costs 𝐶(𝐷) of the different decomposition strategies, the cost 

for the number of requirement updates 𝑛r,  ℎ𝑒 number of design selections 𝑛s, and the 

number of interactions between the designers 𝑛i are considered, i.e., 𝐶(𝐷) = 𝑛r(𝐷)Cr  𝑛s(𝐷)𝐶𝑠  𝑛i(𝐷)𝐶i.     (11) 

For 𝐷 , the requirements are updated for each design variable in the beginning, each design 

variable value is selected once, and there is no interaction between the designers, i.e., 𝑛r =2, 𝑛s = 2, 𝑛i = 0. For 𝐷  and 𝐷 , the requirements are updated for each design variable 

before selecting their values, each design variable value is selected once, and there is one 

interaction in between, i.e., 𝑛r = 2, 𝑛s = 2, 𝑛i = 1. For 𝐷 , there is no requirement update, 
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and it is assumed that each design variable value is readjusted once with respect to the 

decision for the other design variable value, which requires four interactions to ensure a 

permissible system design, i.e., 𝑛r = 0, 𝑛s =  , 𝑛i =  . Note that this assumption does not 

necessarily reflect the reality and is only made for the purpose of comparison here. 

Regarding the values of 𝐶i, 𝐶s, and 𝐶r, two different cases are considered: 

Case 1: 𝐶r = 𝐶s = 𝐶i = 1 where 𝑛i, 𝑛s, and 𝑛r  are weighted the same, 

Case 2: 𝐶r = 3, 𝐶i = 𝐶s = 1 where 𝑛r is weighted three times. 

For each problem (a) and (b), the values of (𝜇(𝐷, 𝐹), 𝐶(𝐷)) are visualized in Fig. 5 for the 

two cases depending on the decomposition strategy 𝐷. Note that all values for 𝐷  and 𝐷  

are the same because of the definitions of 𝜇(𝐷, 𝐹) and 𝐶(𝐷), i.e., the order of the 

sequencing of dependent design decisions is irrelevant here. 

 

Figure 5. Flexibility and cost (𝜇(𝐷, 𝐹), 𝐶(𝐷)) for case 1 (top row) and 2 (bottom row) depending 

on the decomposition strategy 𝐷: independent (𝐷 , square markers), dependent (𝐷  and 𝐷 , triangle 

markers), and interdependent (𝐷 , circle markers) for the industrial problems related to crash design 

(a, left column) and battery pack design (b, right column). Utopia point is bottom right. 

For both problems (a) and (b), the decomposition strategies 𝐷 , 𝐷 , and 𝐷  are Pareto 

optimal in case 1 with 𝐶(𝐷 )  𝐶(𝐷 ) = 𝐶(𝐷 )  𝐶(𝐷 ) and 𝜇(𝐷 , 𝐹) = 𝜇(𝐷 , 𝐹) =𝜇(𝐷 , 𝐹) > 𝜇(𝐷 , 𝐹), and the decomposition strategy 𝐷  is Pareto optimal in case 2 with 𝐶(𝐷 ) = 𝐶(𝐷 )  𝐶(𝐷 ) = 𝐶(𝐷 ) and 𝜇(𝐷 , 𝐹) = 𝜇(𝐷 , 𝐹) = 𝜇(𝐷 , 𝐹) > 𝜇(𝐷 , 𝐹). 

Using this setting for two design variables, there are always two critical cost thresholds for 

the requirement updates (𝐶r) above which interdependent design is preferred against 

dependent design (threshold 1 for formulae), and preferred against both dependent and 

independent design (threshold 2 for formulae, see case 2). Below threshold 2, there are 

always two Pareto optimal decomposition strategies, i.e., it is a trade-off between 

maximum flexibility (interdependent design, between threshold 1 and 2; dependent design, 

below threshold 1, see case 1) and minimum process cost (independent design). 
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The presented results were obtained using strong assumptions about the cost coefficients 𝐶r, 𝐶s and 𝐶i, and the number of required design actions 𝑛r, 𝑛s and 𝑛i. In particular the 

latter will probably be highly dependent on the actual design problem under consideration. 

A strongly nonlinear problem subject to many constraints with an intricate solution space 

geometry is more likely to require a large 𝑛s and 𝑛i. This is currently being explored in 

parallel work, see e.g. (Wöhr et al., 2020). Regardless of the concrete numbers, these two 

very simple examples show a mechanism that makes the most structured design approach, 

i.e., independent design, preferable: when the cost of iteration and interaction outweighs 

the cost of requirement formulation and loss flexibility due to decomposition. The most 

unstructured approach, i.e. interdependent design, is preferable, when iteration and 

interaction are cheap. 

4 Conclusion 

In this paper, a framework to obtain optimal process architectures for a solution-space-

based design process was proposed. Here, feasible sequencings of independent, dependent, 

and interdependent design decisions are viewed as decomposition strategies and are 

assessed. This assessment is done by considering maximum design flexibility and 

minimum process cost, which yields Pareto optimal decomposition strategies, i.e., Pareto 

optimal process architectures. The framework was applied to two simple industrial design 

problems for which a dependence of the Pareto optimal decomposition strategies on the 

cost of the requirement updates was detected. The general structure of the framework offers 

its application to more complex design problems with multiple design variables for which 

more differentiable results are expected, as well. Furthermore, realistic costs of the 

different decomposition strategies should be investigated, and the quantification of the total 

design flexibility must be clarified in order to obtain useful Pareto optimal process 

architectures. 
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