
 34. DfX-Symposium 2023

© 2023 die Autoren | DOI: 10.35199/dfx2023.18

Generative Models for Feature-Based Product Development as
a Basis for Hybrid Decision-Making

Valent in Schemmann 1 , Thorsten Schmidt 1 , * , Niels Demke 1 , Frank Mantwil l 1

1 Institute of Machine Elements and Computer Aided Product Design (MRP), Helmut Schmidt University Hamburg

* Corresponding author:
Thorsten Schmidt
MRP, Helmut-Schmidt-Universität Hamburg
Holstenhofweg 85
22043 Hamburg
 040/6541-3794
 thorsten.schmidt@hsu-hh.de

Abstract

This paper investigates the general possibility for applying
generative models in the early phase of product development.
For this purpose, the fundamentals of feature-based product
development are introduced and related to the development
methodology VDI 2221 alongside a brief overview of deep
generative models. Based on this, a conceptual framework is
developed that combines the methods and proposes a
collaborative approach. In conclusion, a prototypical
implementation is performed by training a StyleGAN2 based on
vehicle profiles followed by executing a GANSpace principal
component analysis. Finally, the various results are presented
and the possibilities of manipulating the generated images based
on identified features are discussed and transferred back into the
product development process.

Keywords

Feature-Based Product Development, Deep Generative Models,
Principal Component Analysis, StyleGAN2, GANSpace

2

1. Introduction

The design field is increasingly emerging as the next application domain of Artificial

Intelligence (AI) [1]. The recent development of a whole group of generative models like Text-

to-Text (e.g., ChatGPT), Text-to-Image (e.g., Midjourney) or even Text-to-Video (e.g.,

Synthesia) has opened the possibility to support product managers and designers in creative

tasks by providing powerful tools and support. Especially for an early-stage design, they offer

the possibility to generate new solutions within a defined solution space, for example by

recombination of existing features, and thus to investigate the design space systematically and

successfully [1, 2]. As machine creativity is still limited, such an approach represents a form of

support for limited creative tasks in the context of assistance systems [3].

While a developer's proposed solution space is rooted in their individual experiences, the

solution space of a generative model is shaped by the diversity determined within its training

dataset. This leads to challenges in the formalization of engineering problems and

development of assistance systems. Features and their combination represent a possible field

for considering the derivation of explicit design knowledge in the context of hybrid decision

processes. Generative models can be used to generate proposed solutions that are evaluated

by the developer so that features can be recognized. In computer science, product creation is

an application area. Features refer to data and their measurable properties in different domains

[4]. In product development, there is a strong focus on explainability, which leads to different

approaches compared to generative models.

This paper examines the technical capabilities of generative models and feature recognition

within the context of assistance systems in collaboration with developers, proposing a novel

framework to integrate these elements. Through a prototypical implementation, key aspects of

the framework are practically applied, and the outcomes are thoroughly discussed. The

proposed framework aims to streamline and expedite the development process, offering

potential benefits in terms of efficiency and simplification.

2. Research Problem & Research Question

The addressed research problem investigates the formalization of implicit design knowledge

through the recognition of relevant design features by hybrid assistance systems in the early

stages of product development. These decision systems describe possible applications for the

internalization of knowledge, for example by evaluating the conditionability of design

parameters of a Deep Generative Model (DGM). Through the hybrid use of DGMs,

development work is focused on the evaluation of proposed solutions. This raises questions

about the interaction between the developer and the assistance system as well as the AI

methods used to derive features.

Three research objectives are addressed to support formalizing the design process through

generative models: First, description of the product development process considering the

formalization of design knowledge about features. Second, description and development of a

framework to methodical support the designer in his creative tasks. Third, application of a

Generative Adversarial Network (GAN) to generate artificial images and subsequent

performing of a Principal Component Analysis (PCA) to identify design parameters in a

prototypical application as a tool. These overall research objectives lead to the following

research question: How can generative models be used to derive features to support implicit

design knowledge for purposeful influencing the solution in the context of hybrid decision

processes?

By addressing the research question, the objective is to contribute to the acceleration of

prototyping through the systematic extraction of requirements and structural features at an

early stage and, based on this, to extend the existing understanding of feature technology and

knowledge-based engineering [5, 6].

3

3. Methodology

In order to answer the research question, this paper employs a four-step approach to

establish a fundamental understanding of utilizing generative models in the context of feature-

based product development, which is described in the following.

First, a literature review of related work and neighboring fields is presented. In this paper, a

specific effort is made to focus on the early phase of product development, which is crucial for

the later success of a product [7]. The literature review describes in particular the term "feature"

in the traditional sense of feature-based product development in the VDI guideline 2218 [6] as

well as in the context of the application within generative models, e.g., in the form of so-called

“feature extraction”.

Second, using the identified Knowledge-, Processing- and Information-Layers, a conceptual

framework is developed and presented, which describes the use of generative models in the

early phase of product development. This framework emphasizes the VDI guideline 2221 from

the clarification of requirements to the elaboration of a first initial system design [8]. Influences

on the process model by the presented technologies and their focus on the evaluation of

proposed solutions are shown.

Third, the actual DGM is trained and analyzed for its main components. The observation of

the principal components allows identification of the characterizing features in the generated

images. The images are then used to enrich the set of transformed training data or used in a

design exploration loop to evaluate partial design ideas in the detail design process.

Based on the core of this framework, a prototypical implementation is exemplarily performed

to validate the described capabilities of generative models. In this paper, the prototypical

implementation is limited to the use of images from an available training dataset of side profiles

of passenger cars [9]. The prototype includes a StyleGAN2 implementation and a PCA of the

generated latent space. The solution space is required to consist of difficult-to-distinguish

images of the same size and style as the original dataset.

Fourth, the results are interpreted and the possibilities to transfer the gained knowledge in

the sense of feature-based product development in terms of hybrid decision support for the

derivation of design parameters or the incorporation of planning processes are discussed.

4. Related Work

4.1. Feature-Based Product Development

Formerly, feature technology was used to map manufacturing instructions for specific

geometric sub-areas in work planning [6]. Based on this, features were further developed as

information and integration objects over the entire life cycle of a product, contributing to a

simplification and acceleration of product development [10]. The term “feature” is not

standardized. In general, features can be understood as information elements representing

areas (not exclusively geometry) of special (technical) interest of single or multiple products

(physically realizable object created by a natural process or by manufacturing) [11]. With this

definition, non-geometric product features are included as well, as they are important for

following processes and data analysis (cf. [10]).

Features are also used for further enhancement of the product model by providing

information and allowing relevant aspects of the Design for X to be included [6]. In this context,

features represent a specific view of the product description, which are associated with

characteristic classes and life cycle phases [6]. Accordingly, different types of features are

used, such as geometry features, design features, information features, manufacturing

features, assembly features, functional features, calculation features, and measurement

features [10].

In order to create capacity for creative and innovative activities, feature technology forms

the basis for achieving automation potentials in routine tasks by representing knowledge as

4

well as processing it [6]. Feature combinations provide a way to combine feature elements and

create new knowledge [10]. In this context, however, there are risks that models are

overloaded with too much information and no longer achieve the desired benefit in terms of

their usability [10]. Thus, in addition to the design activity, further skills are needed for the

development of information technologies in product development. Another issue results from

the increasing availability and use of historical product data for deriving design knowledge in

product development. With the different understanding of the feature term in the informatic

science and the use of generative models, the following section will deal with the necessary

basics.

4.2. Deep Generative Models

Deep Generative Models (DGMs) are a subclass of machine learning algorithms that can

learn underlying distributions of large-scale datasets and generate new samples that resemble

the training data. Generative modeling can be broadly classified into four main categories

Autoregressive Models, Flow-based Models, Latent Variable Models and Energy-based

Models [12] as shown in Figure 1. Generative Adversarial Network (GAN) and Variational

Autoencoders (VAE) belong to the Latent Variable Models and can learn and represent

complex data distributions in multi-dimensional spaces. Originally developed in the field of

computer vision, these models increasingly attract researchers in the engineering design

community as these models are able to synthesize new samples. As part of new product

creation, four common approaches of DGM can be identified with applications within the design

stage. These include the leverage of Deep Neural Networks (DNNs), GANs, VAEs, and

Reinforcement Learning (RL) which are commonly used for design synthesis [2, 13].

Figure 1: Taxonomy of DGMs based on Tomczak [12]

First introduced in 2014, the idea of a GAN [14] has attracted more and more attention as

these models show strong results in image synthesis [15]. A GAN consists of two antagonist

models, a generator 𝐺 and a discriminator 𝐷, who work as binary classifiers [16]. 𝐷 learns the

data distribution from the training data and is able to classify new data as real (part of the

training data) or fake (not part of the training data) after sufficient training. 𝐺 generates random

images using a random noise input signal, which are then classified by 𝐷 as real or fake. If

samples are classified as real, the model is capable of generating new samples that possess

statistical similarity to the training data but were not part of the original data. The symbol 𝐸

represents expected values for the training data 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) and the generates samples

𝐸𝑧~𝑝𝑧(𝑧).

5

In other words, GANs can generate patterns that closely mimic the distribution of real data,

as they are able to learn and follow the underlying rules and patterns present in the real data

through the process of self-exploration [17]. The min-max optimization function for an

exemplary GAN is displayed in (1) [14]:

min
𝐺
 max
𝐷

𝑉 (𝐷, 𝐺) = 𝐸𝑥∼𝑝data(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧∼𝑝z(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] (1)

Equation (1) comprises two logarithmic loss functions, one for the generator and one for the

discriminator. The primary objective of the discriminator is to maximize its loss by applying

penalties whenever it misclassifies real instances from the training data as fake or incorrectly

identifies fake instances generated by the generator as real. On the other hand, the generator

strives to minimize this function. The generator loss is determined based on the classification

of the discriminator. It receives a reward when successfully fooling the discriminator and is

penalized otherwise.

4.3. Usage of the Feature Term in GANs and Application in Product Creation

In contrast to feature-based product development, the different meaning of the term

“feature” in the domain of DGMs needs to be clarified. According to Martin [4] “a feature is a

semantic group (modeling atom), characterized by a set of parameters, used to describe an

object which cannot be broken down, used in reasoning relative to one or more activities linked

to the design and use of products and production systems” (p. 219) [4]. The term can be

interpreted as a descriptive characteristic of an object to be described. In image recognition as

a subfield of computer vision, feature recognition is widely used in the classification of images

and object recognition on images. These features are differentiated into color features, texture

and shape features [18].

However, not only image classifiers but also generative models are powerful for feature

extraction and anomaly detection. Due to the fact that many generative models have their

origin in computer vision, there are recent efforts to apply these approaches in engineering

practice and to use the models in product creation. In engineering design practice, several

potential applications of DGMs, specifically GANs, have emerged, which are exemplarily

described below. The applications encompass topology optimization, generation of

microstructures and metamaterials, as well as shape generation in 2D (e.g., images) and 3D

(e.g., voxel or point clouds) [2].

CreativeGAN is a method introduced by Nobari et al. [13] for the automated design of novel

bike frameworks using a GAN, novelty detection, and segmentation network. The objective of

the model is to synthesize images of new bike frame designs with novel features that were

previously detected in the training data.

RangeGAN, on the other hand, is a conditional design synthesis model for 3D airplane

designs. It enables the generation of designs within a specific range, providing control over the

characteristics of the generated designs. The authors demonstrate the feasibility of integrating

multiple constraints into the model and conditioning the outcomes on several constraints, such

as volume and length-to-wingspan ratio, allowing for potential overlaps [13].

Another approach is proposed by Gu et al. [5], where they combine a Convolutional Neural

Network (CNN) with a GAN. Initially, the GAN generates images of springs, and their geometric

properties are then predicted by the CNN. Subsequently, 3D-CAD models can be directly

created from the generated data, allowing the determination of mechanical properties. This

approach helps to accelerate the typical trial and error in the design process.

6

5. Conceptual Framework

Due to the rapid technological developments in AI, a need and opportunity have been

identified to integrate these new methods into the process outlined in VDI 2221 [8] to support

designers efficiently and show promising direction for the future. To offer a starting point to

integrate these methods, the proposed framework in Figure 2 comprises three distinct meta-

levels:

First, the Knowledge Layer (KL), which provides the underlying data basis as well as implicit

knowledge about features and association rules. There exist various configurations of DGMs

with different requirements for training data. For this purpose, the framework includes a KL

responsible for data storage and retrieval. Data in product development can take various

formats, such as tables, images, or higher dimensional structures such as meshes. The data

is gathered from different sources, such as product specifications, user requirements, market

research, and past designs. DGMs have special requirements for input data and formats,

depending on their use case. Therefore, the primary task of the KL is not only data storage but

also data selection, preprocessing (e.g., checking for completeness, errors etc.) and

transformation.

Second, the Processing Layer (PL) encompasses the architectures and mechanisms of the

DGM. It is important to emphasize that there are no one-size-fits-all solutions, and a

differentiation according to the specific use case must be made.

Finally, the Information Layer (IL) includes the interface to human input. The IL serves as

an interface between the designer and the assistance system. For the interaction with the user,

different possibilities such as sliders or value tables are available to influence the solution in a

targeted manner. The traditional development process starts with the initial requirements for

the product or a detailed problem description. Derived from these requirements, the developer

initiates the generation of solutions in the "Create" phase. The next decision point is the

evaluation, which q h ’ x h h e

further elaborated and optimized in "Further Detail Steps".

Figure 2: Knowledge-, Processing- and Information-Layer of the conceptual framework

The task of the central DGM is to generate solution proposals based on the requirements,

which will subsequently be evaluated by the developer.

 1

7

6. Prototypical Implementation

To realize the proposed approach and to demonstrate the general applicability of generative

models, a prototypical implementation is performed in two steps. Leveraging the established

framework, this implementation considers the central aspects encompassing data

preprocessing, training of the DGM and evaluation of the generated results. The development

of the computational reasoning model as well as the further derivation of partial design models

and an overall design will not be part of the scope of this particular implementation.

Based on the idea of Macey [19] to classify vehicles according to their features using a

classification map, this approach deals with the derivation of features from images. The used

dataset consists of 1480 images depicting the side profiles of passenger cars from 37 distinct

car brands in a resolution of 1024 x 1024 pixels [9]. This dataset is suitable because the

pictured objects share a high degree of similarities and represent a true industrial design task

as it is found in the real world when it comes to the design of early stage sideviews of cars. To

provide a reasonable increase in the amount of used training data, the prototypical

implementation uses adaptive discriminator augmentation to artificially expand the size of the

dataset.

6.1. Vehicle Shape Generation Model with StyleGAN2

In order to build and train a model, the codebase of StyleGAN2 has been chosen.

StyleGAN2 is an extension of StyleGAN, which has been published by Nvidia Corporation in

2020 and has achieved state-of-the-art results in generating unconditional images using GANs

[20]. The basic GAN configuration assumes the existence of a probability distribution 𝑝(𝑧) from

which latent vectors 𝑧 ∈ 𝑍 are sampled. Through a neural network, the generator function 𝐺 is

learned, which maps the latent vector to output, in this case, an image 𝐼 = 𝐺(𝑧). StyleGAN

introduces a mapping network including another set of latent vectors 𝑤 and an additional latent

space 𝑊, 𝑤 ∈ 𝑊 which is another mapping from the 𝑍 space that is more disentangled and

offers the possibility to separate high-level attributes of images [21].

The training takes place on a virtual runtime hosted by Google Colab [22] with a Nvidia

Tesla T4 GPU and comparatively on a local runtime with a single Nvidia V100 GPU using the

same Python code. The training of the StyleGAN2 is complex as well as computationally and

time intensive and is therefore investigated on the basis of the two different setups. Over the

entire runtime, the cloud-based environment achieves ≈507 sec/kimg while the local

environment performs ≈153 sec/kimg, where the unit kimg stands for 1,000 generated images.

Depending on the respective size of the used dataset, an optimal model must have seen about

25,000 kimg to reach convergence for an extensive dataset of e.g., 70,000 images [23].

Reasonable results are already achieved after approx. 5,000 kimg [24]. Therefore, the

presented research is terminated after 5,000 kimg, resulting in a significant time advantage of

≈8,9 days of training on the local runtime compared to ≈29,3 days of training on the hosted

runtime. For larger models with even more training data, there is a correspondingly significant

need for more powerful hardware.

After the training, the trained model is able to generate images from a random seed (noise

vector from the 𝑍 space distribution) which resemble the training dataset in style and motive

and have the same resolution of 1024 x 1024 pixels.

6.2. Principal Component Analysis with GANSpace

In preparation for examining the generated latent space, the first step is to convert the file

generated from TensorFlow (.pkl) into a PyTorch format (.pt). For this preprocessing step, the

”SG2-ADA-PT to Ro ” implementation is used for converting [25].

8

Subsequently, a PCA is performed using the GANSpace implementation to find

interpretable GAN controls [26]. The PCA processes the high-dimensional latent space of the

remapped 𝑊 space and reduces its dimensionality allowing visualization. Therefore, the

exploration of the intermediate result contributes significantly to the explainability and

consequently to the acceptability of the selected approach. The number of resulting principal

components is at most equal to the degree of dimensionality of the latent space [20, 27].

A clustering of the principal components reveals that the associated images share similar

features. Varying along such a principal component changes the manifestation of the

corresponding feature on the image and forms the so-called feature vector 𝑤 [20]. This can

concern single (distinctive) or multiple features at once [20]. Figure 3 shows two of the 24

examined principal components. In this case, the generated principal components in

descending order are causal for the intensity of the manifestation of the represented features.

The first principal component apparently describes the driving direction of the vehicle as well

as the background. The second represented principal component describes the vehicle’

bodyshape and the color of the vehicle. Other identified features are for example the rims or

the wheelbase of the vehicle. The complete interpretation of the identified features is still up to

the individual and is complex and therefore prone to error, especially when interpreting multi-

feature principal components. In particular, multi-feature principal components represent an

area of further research. Ideally, each principal component corresponds to exactly one

identified feature.

Figure 3: Varying two of the 24 examined principal components and the corresponding changes to the images

The possibility to examine the latent space with the help of a PCA is a special aspect of the

combined use of StyleGAN2 and GANSpace due to the harmonized architecture and therefore

constitutes a particularly symbiotic application.

7. Results & Discussion

The results of this paper are divided into a conceptual part, an analytical part and an

applicational part. In the conceptual part, a contribution was made by the clarification of the

feature term in the feature-based product development as well as with the general taxonomy

of DGMs. The framework describes a conceptual method to integrate the use of generative

models into a process model according to VDI 2221 [8]. In the analytical part, a PCA was

presented to explore the latent space of a previously trained StyleGAN2 implementation. As a

9

result of this exploration, the principal components were identified as characteristic properties

of the images used for training, which can be specifically modified for the generation of new

images by the generator. The result of this modification is a manipulable image that can be

morphed from identified design parameters and used as the basis of partial design in the early

stages of product development.

Overall, the results demonstrate the general applicability of the proposed approach for the

formulated purposes and for data-driven assistance systems of a developer. When analyzing

the achieved quality of the images over the runtime, a fast increase with subsequently

decreasing marginal returns is observed. A closer look at the generated images in Figure 4

reveals some errors so-called anomalies.

Figure 4: Four images generated by a random seed and the trained StyleGAN2 implementation

Improvements in the quality of the generated images are not a subject of this study, but

presumably could be realized by a larger training dataset, a longer runtime or more powerful

hardware.

8. Conclusion & Future Research

The presented approaches offer the potential to open the black box characteristic of AI

methods and significantly increase the explainability of the presented solution. The presented

concept exemplifies a possible use of data-driven methods in product development in order to

create a foundation for the exploration of novel applications.

According to current research, the use of PCA is exclusively limited to BigGAN and

StyleGAN based architectures, which is a restriction in the selection of further methods of

generative models. Another restriction is the limitation of the generated solution within the

solution space, which is defined by the training dataset. The generation of solutions outside

the solution space remains the subject of future research. There is a further need for research

in the integration of functions and in the consideration of additional constraints such as

package space limitations as well as the detection and extrapolation of trends, for example, in

the generation-spanning consideration of vehicle models. To address functions and other

constraints, integrations between symbolic and sub-symbolic AI approaches should also be

considered. Furthermore, time dependencies have to be included in order to incorporate

planning processes. A focus on processing multi-feature principal components should be

pursued in further work.

A more in-depth evaluation with an industrial partner, which goes beyond the prototypical

implementation, is still pending. The aim of this evaluation with an industry partner could be

the development and use of a user interface with sliders for the identified feature vectors. Using

the sliders would give the user the interactive opportunity to try different linear combinations of

feature values and evaluate the created overlay of morphed design parameters immediately.

Finally, the dependency of the quality of the generated images on technical factors such as

the quantity of the training data, the used hardware and respectively the runtime requires

further investigation.

10

References

[1] de Kleer, Johan; Feldman, Alexander; Matei, Ion: Correcting Design Errors in Components and Connections
Circuit Design. Palo Alto Research Center, 2019.

[2] Regenwetter, Lyle; Nobari, Amin Heyrani; Ahmed Faez: Deep Generative Models in Engineering Design: A
Review. In: Journal of Mechanical Design 144.7, DOI: 10.1115/1.4053859, 2022.

[3] Franceschelli, M. M. Giorgio; Musolesi, Mirco: Creativity and Machine Learning: A Survey.
https://arxiv.org/abs/2104.02726, 2021.

[4] Martin, Patrick: Some aspects of integrated production and manufacturing. In: Advances in Integrated Design
and Manufacturing in Mechanical Engineering (Bramley, A., Brissaud, D., Coutellier, D., & McMahon, C.,
Eds.), pp. 215–226. Amsterdam: Springer, 2005.

[5] Gu, Zewen et al.: A Novel Self-Updating Design Method for Complex 3D Structures Using Combined
Convolutional Neuron and Deep Convolutional Generative Adversarial Networks. In: Advanced Intelligent
Systems 4.6, p. 2100186, DOI: 10.1002/aisy.202100186, 2022.

[6] VDI: VDI-Richtlinie 2218 – Informationsverarbeitung in der Produktentwicklung: Feature-Technologie, 2003.

[7] Ehrlenspiel, Klaus et al.: Kostengünstig Entwickeln und Konstruieren. Berlin, Heidelberg: Springer Vieweg,
DOI: 10.1007/978-3-642-41959-1, 2020.

[8] VDI: VDI-Richtlinie 2221 – Entwicklung technischer Produkte und Systeme - Modell der Produktentwicklung,
2019.

[9] Lee, Gyunpyo; Kim, Taesu; Suk, Hyeon-Jeong: GP22: A Car Styling Dataset for Automotive Designers. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
https://arxiv.org/pdf/2207.01760, 2022.

[10] Bossmann, Marc: Feature-basierte Produkt- und Prozessmodelle in der integrierten Produktentstehung.
Dissertation Universität des Saarlandes, Band 38, 2007.

[11] Weber, Christian: What is a Feature and What is its Use? – Results of FEMEX Working Group. In: 29th
International Symposium on Automotive Technology and Automation 1996 (ISATA 96), Florenz/Italien 03.–
06.06.1996. Tagungsband S. 109/116, 1996.

[12] Tomczak, Jakub M.: Deep Generative Modeling. Springer eBook Collection, Cham: Springer, DOI:
10.1007/978-3-030-93158-2, 2022.

[13] Nobari, Amin; Heyrani, Wei Chen; Ahmed, Faez: Range-GAN: Range-Constrained Generative Adversarial
Network for Conditioned Design Synthesis. URL: https://arxiv.org/pdf/2103.06230, 2021.

[14] Goodfellow, Ian J. et al.: Generative Adversarial Networks. https://arxiv.org/pdf/1406.2661, 2014.

[15] Karras, Terro; Laine, Samuli; Aila, Timo: A Style-Based Generator Architecture for Generative Adversarial
Networks. URL: https://arxiv.org/pdf/1812.04948, 2018.

[16] Russell, Stuart J.; Norvig, Peter: Artificial intelligence: A modern approach. Fourth Edition, Global Edition.
Pearson Series in Artificial Intelligence. Harlow: Pearson, 2022.

[17] Ganguly, Kuntal: Learning Generative Adversarial Networks: Next generation deep learning simplified. 1st
ed. Birmingham: Packt Publishing, 2017.

[18] Tian, Dongpin: A Review on Image Feature Extraction and Representation Techniques. In: International
Journal of Multimedia and Ubiquitous Engineering 8(4), p. 385-295, 2013.

[19] Macey, Stuart; Wardle, Geoff: H-Point: The fundamentals of car design & packaging. 1. ed. Culver City:
Design Studio Press, URL: https://permalink.obvsg.at/AC07759341, 2009.

[20] Meng, Shengyu: Exploring in the Latent Space of Design: A Method of Plausible Building Facades Images
Generation, Properties Control and Model Explanation Base on StyleGAN2. In: Yuan, P.F., Chai, H., Yan, C.,
Leach, N. (eds) Proceedings of the 2021 DigitalFUTURES. CDRF 2021. Springer, Singapore,
https://doi.org/10.1007/978-981-16-5983-6_6, 2021.

[21] Karras, Terro et al.: Analyzing and Improving the Image Quality of StyleGAN.
https://arxiv.org/pdf/1912.04958, 2019.

[22] Bisong, Ekaba: Google Colaboratory. In: Building Machine Learning and Deep Learning Models on Google
Cloud Platform - A Comprehensive Guide for Beginners. Apress, Berkeley, CA. pp. 59-64,
https://doi.org/10.1007/978-1-4842-4470-8_7, 2019.

[23] NVlabs: FFHQ – Dataset. https://github.com/NVlabs/ffhq-dataset, 2023

[24] Karras, Terro et al.: Training Generative Adversarial Networks with Limited Data. URL:
https://arxiv.org/pdf/2006.06676, 2020.

[25] Google Colab Notebook: PKL to PT Converter: https://colab.research.google.com/github/dvschultz/stylegan2-
ada-pytorch/blob/main/SG2_ADA_PT_to_Rosinality.ipynb, 2023.

[26] Härkönen, Erik et al.: GANSpace: Discovering Interpretable GAN Controls. In: Advances in Neural
Information Processing Systems 33, URL: https://arxiv.org/pdf/2004.02546, 2020.

[27] Yonekura, Kazuo; Wada, Kazunari; Suzuki, Katsuyuki: Generating various airfoil shapes with required lift
coefficient using conditional variational autoencoders. URL: http://arxiv.org/pdf/2106.09901v1, 2021.

