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Abstract 

This paper investigates the general possibility for applying 
generative models in the early phase of product development. 
For this purpose, the fundamentals of feature-based product 
development are introduced and related to the development 
methodology VDI 2221 alongside a brief overview of deep 
generative models. Based on this, a conceptual framework is 
developed that combines the methods and proposes a 
collaborative approach. In conclusion, a prototypical 
implementation is performed by training a StyleGAN2 based on 
vehicle profiles followed by executing a GANSpace principal 
component analysis. Finally, the various results are presented 
and the possibilities of manipulating the generated images based 
on identified features are discussed and transferred back into the 
product development process. 
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1. Introduction 

The design field is increasingly emerging as the next application domain of Artificial 

Intelligence (AI) [1]. The recent development of a whole group of generative models like Text-

to-Text (e.g., ChatGPT), Text-to-Image (e.g., Midjourney) or even Text-to-Video (e.g., 

Synthesia) has opened the possibility to support product managers and designers in creative 

tasks by providing powerful tools and support. Especially for an early-stage design, they offer 

the possibility to generate new solutions within a defined solution space, for example by 

recombination of existing features, and thus to investigate the design space systematically and 

successfully [1, 2]. As machine creativity is still limited, such an approach represents a form of 

support for limited creative tasks in the context of assistance systems [3]. 

While a developer's proposed solution space is rooted in their individual experiences, the 

solution space of a generative model is shaped by the diversity determined within its training 

dataset. This leads to challenges in the formalization of engineering problems and 

development of assistance systems. Features and their combination represent a possible field 

for considering the derivation of explicit design knowledge in the context of hybrid decision 

processes. Generative models can be used to generate proposed solutions that are evaluated 

by the developer so that features can be recognized. In computer science, product creation is 

an application area. Features refer to data and their measurable properties in different domains 

[4]. In product development, there is a strong focus on explainability, which leads to different 

approaches compared to generative models. 

This paper examines the technical capabilities of generative models and feature recognition 

within the context of assistance systems in collaboration with developers, proposing a novel 

framework to integrate these elements. Through a prototypical implementation, key aspects of 

the framework are practically applied, and the outcomes are thoroughly discussed. The 

proposed framework aims to streamline and expedite the development process, offering 

potential benefits in terms of efficiency and simplification. 

2. Research Problem & Research Question 

The addressed research problem investigates the formalization of implicit design knowledge 

through the recognition of relevant design features by hybrid assistance systems in the early 

stages of product development. These decision systems describe possible applications for the 

internalization of knowledge, for example by evaluating the conditionability of design 

parameters of a Deep Generative Model (DGM). Through the hybrid use of DGMs, 

development work is focused on the evaluation of proposed solutions. This raises questions 

about the interaction between the developer and the assistance system as well as the AI 

methods used to derive features.  

Three research objectives are addressed to support formalizing the design process through 

generative models: First, description of the product development process considering the 

formalization of design knowledge about features. Second, description and development of a 

framework to methodical support the designer in his creative tasks. Third, application of a 

Generative Adversarial Network (GAN) to generate artificial images and subsequent 

performing of a Principal Component Analysis (PCA) to identify design parameters in a 

prototypical application as a tool. These overall research objectives lead to the following 

research question: How can generative models be used to derive features to support implicit 

design knowledge for purposeful influencing the solution in the context of hybrid decision 

processes? 

By addressing the research question, the objective is to contribute to the acceleration of 

prototyping through the systematic extraction of requirements and structural features at an 

early stage and, based on this, to extend the existing understanding of feature technology and 

knowledge-based engineering [5, 6]. 
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3. Methodology 

In order to answer the research question, this paper employs a four-step approach to 

establish a fundamental understanding of utilizing generative models in the context of feature-

based product development, which is described in the following. 

First, a literature review of related work and neighboring fields is presented. In this paper, a 

specific effort is made to focus on the early phase of product development, which is crucial for 

the later success of a product [7]. The literature review describes in particular the term "feature" 

in the traditional sense of feature-based product development in the VDI guideline 2218 [6] as 

well as in the context of the application within generative models, e.g., in the form of so-called 

“feature extraction”.  

Second, using the identified Knowledge-, Processing- and Information-Layers, a conceptual 

framework is developed and presented, which describes the use of generative models in the 

early phase of product development. This framework emphasizes the VDI guideline 2221 from 

the clarification of requirements to the elaboration of a first initial system design [8]. Influences 

on the process model by the presented technologies and their focus on the evaluation of 

proposed solutions are shown. 

Third, the actual DGM is trained and analyzed for its main components. The observation of 

the principal components allows identification of the characterizing features in the generated 

images. The images are then used to enrich the set of transformed training data or used in a 

design exploration loop to evaluate partial design ideas in the detail design process. 

Based on the core of this framework, a prototypical implementation is exemplarily performed 

to validate the described capabilities of generative models. In this paper, the prototypical 

implementation is limited to the use of images from an available training dataset of side profiles 

of passenger cars [9]. The prototype includes a StyleGAN2 implementation and a PCA of the 

generated latent space. The solution space is required to consist of difficult-to-distinguish 

images of the same size and style as the original dataset.  

Fourth, the results are interpreted and the possibilities to transfer the gained knowledge in 

the sense of feature-based product development in terms of hybrid decision support for the 

derivation of design parameters or the incorporation of planning processes are discussed. 

4. Related Work 

4.1. Feature-Based Product Development 

Formerly, feature technology was used to map manufacturing instructions for specific 

geometric sub-areas in work planning [6]. Based on this, features were further developed as 

information and integration objects over the entire life cycle of a product, contributing to a 

simplification and acceleration of product development [10]. The term “feature” is not 

standardized. In general, features can be understood as information elements representing 

areas (not exclusively geometry) of special (technical) interest of single or multiple products 

(physically realizable object created by a natural process or by manufacturing) [11]. With this 

definition, non-geometric product features are included as well, as they are important for 

following processes and data analysis (cf. [10]). 

Features are also used for further enhancement of the product model by providing 

information and allowing relevant aspects of the Design for X to be included [6]. In this context, 

features represent a specific view of the product description, which are associated with 

characteristic classes and life cycle phases [6]. Accordingly, different types of features are 

used, such as geometry features, design features, information features, manufacturing 

features, assembly features, functional features, calculation features, and measurement 

features [10].  

In order to create capacity for creative and innovative activities, feature technology forms 

the basis for achieving automation potentials in routine tasks by representing knowledge as 
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well as processing it [6]. Feature combinations provide a way to combine feature elements and 

create new knowledge [10]. In this context, however, there are risks that models are 

overloaded with too much information and no longer achieve the desired benefit in terms of 

their usability [10]. Thus, in addition to the design activity, further skills are needed for the 

development of information technologies in product development. Another issue results from 

the increasing availability and use of historical product data for deriving design knowledge in 

product development. With the different understanding of the feature term in the informatic 

science and the use of generative models, the following section will deal with the necessary 

basics. 

4.2. Deep Generative Models 

Deep Generative Models (DGMs) are a subclass of machine learning algorithms that can 

learn underlying distributions of large-scale datasets and generate new samples that resemble 

the training data. Generative modeling can be broadly classified into four main categories 

Autoregressive Models, Flow-based Models, Latent Variable Models and Energy-based 

Models [12] as shown in Figure 1. Generative Adversarial Network (GAN) and Variational 

Autoencoders (VAE) belong to the Latent Variable Models and can learn and represent 

complex data distributions in multi-dimensional spaces. Originally developed in the field of 

computer vision, these models increasingly attract researchers in the engineering design 

community as these models are able to synthesize new samples. As part of new product 

creation, four common approaches of DGM can be identified with applications within the design 

stage. These include the leverage of Deep Neural Networks (DNNs), GANs, VAEs, and 

Reinforcement Learning (RL) which are commonly used for design synthesis [2, 13]. 

 

 
Figure 1: Taxonomy of DGMs based on Tomczak [12] 

First introduced in 2014, the idea of a GAN [14] has attracted more and more attention as 

these models show strong results in image synthesis [15]. A GAN consists of two antagonist 

models, a generator 𝐺 and a discriminator 𝐷, who work as binary classifiers [16]. 𝐷 learns the 

data distribution from the training data and is able to classify new data as real (part of the 

training data) or fake (not part of the training data) after sufficient training. 𝐺 generates random 

images using a random noise input signal, which are then classified by 𝐷 as real or fake. If 

samples are classified as real, the model is capable of generating new samples that possess 

statistical similarity to the training data but were not part of the original data. The symbol 𝐸 

represents expected values for the training data 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) and the generates samples 

𝐸𝑧~𝑝𝑧(𝑧). 
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In other words, GANs can generate patterns that closely mimic the distribution of real data, 

as they are able to learn and follow the underlying rules and patterns present in the real data 

through the process of self-exploration [17]. The min-max optimization function for an 

exemplary GAN is displayed in (1) [14]: 

 

min
𝐺
 max
𝐷

𝑉 (𝐷, 𝐺) = 𝐸𝑥∼𝑝data(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧∼𝑝z(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))]  (1) 

 

Equation (1) comprises two logarithmic loss functions, one for the generator and one for the 

discriminator. The primary objective of the discriminator is to maximize its loss by applying 

penalties whenever it misclassifies real instances from the training data as fake or incorrectly 

identifies fake instances generated by the generator as real. On the other hand, the generator 

strives to minimize this function. The generator loss is determined based on the classification 

of the discriminator. It receives a reward when successfully fooling the discriminator and is 

penalized otherwise. 

4.3. Usage of the Feature Term in GANs and Application in Product Creation 

In contrast to feature-based product development, the different meaning of the term 

“feature” in the domain of DGMs needs to be clarified. According to Martin [4] “a feature is a 

semantic group (modeling atom), characterized by a set of parameters, used to describe an 

object which cannot be broken down, used in reasoning relative to one or more activities linked 

to the design and use of products and production systems” (p. 219) [4]. The term can be 

interpreted as a descriptive characteristic of an object to be described. In image recognition as 

a subfield of computer vision, feature recognition is widely used in the classification of images 

and object recognition on images. These features are differentiated into color features, texture 

and shape features [18]. 

However, not only image classifiers but also generative models are powerful for feature 

extraction and anomaly detection. Due to the fact that many generative models have their 

origin in computer vision, there are recent efforts to apply these approaches in engineering 

practice and to use the models in product creation. In engineering design practice, several 

potential applications of DGMs, specifically GANs, have emerged, which are exemplarily 

described below. The applications encompass topology optimization, generation of 

microstructures and metamaterials, as well as shape generation in 2D (e.g., images) and 3D 

(e.g., voxel or point clouds) [2]. 

CreativeGAN is a method introduced by Nobari et al. [13] for the automated design of novel 

bike frameworks using a GAN, novelty detection, and segmentation network. The objective of 

the model is to synthesize images of new bike frame designs with novel features that were 

previously detected in the training data. 

RangeGAN, on the other hand, is a conditional design synthesis model for 3D airplane 

designs. It enables the generation of designs within a specific range, providing control over the 

characteristics of the generated designs. The authors demonstrate the feasibility of integrating 

multiple constraints into the model and conditioning the outcomes on several constraints, such 

as volume and length-to-wingspan ratio, allowing for potential overlaps [13]. 

Another approach is proposed by Gu et al. [5], where they combine a Convolutional Neural 

Network (CNN) with a GAN. Initially, the GAN generates images of springs, and their geometric 

properties are then predicted by the CNN. Subsequently, 3D-CAD models can be directly 

created from the generated data, allowing the determination of mechanical properties. This 

approach helps to accelerate the typical trial and error in the design process. 
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5. Conceptual Framework 

Due to the rapid technological developments in AI, a need and opportunity have been 

identified to integrate these new methods into the process outlined in VDI 2221 [8] to support 

designers efficiently and show promising direction for the future. To offer a starting point to 

integrate these methods, the proposed framework in Figure 2 comprises three distinct meta-

levels: 

First, the Knowledge Layer (KL), which provides the underlying data basis as well as implicit 

knowledge about features and association rules. There exist various configurations of DGMs 

with different requirements for training data. For this purpose, the framework includes a KL 

responsible for data storage and retrieval. Data in product development can take various 

formats, such as tables, images, or higher dimensional structures such as meshes. The data 

is gathered from different sources, such as product specifications, user requirements, market 

research, and past designs. DGMs have special requirements for input data and formats, 

depending on their use case. Therefore, the primary task of the KL is not only data storage but 

also data selection, preprocessing (e.g., checking for completeness, errors etc.) and 

transformation. 

Second, the Processing Layer (PL) encompasses the architectures and mechanisms of the 

DGM. It is important to emphasize that there are no one-size-fits-all solutions, and a 

differentiation according to the specific use case must be made.  

Finally, the Information Layer (IL) includes the interface to human input. The IL serves as 

an interface between the designer and the assistance system. For the interaction with the user, 

different possibilities such as sliders or value tables are available to influence the solution in a 

targeted manner. The traditional development process starts with the initial requirements for 

the product or a detailed problem description. Derived from these requirements, the developer 

initiates the generation of solutions in the "Create" phase. The next decision point is the 

evaluation, which         q       h           ’   x                              h         h    e 

further elaborated and optimized in "Further Detail Steps". 

 

 
Figure 2: Knowledge-, Processing- and Information-Layer of the conceptual framework 

The task of the central DGM is to generate solution proposals based on the requirements, 

which will subsequently be evaluated by the developer. 
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6. Prototypical Implementation 

To realize the proposed approach and to demonstrate the general applicability of generative 

models, a prototypical implementation is performed in two steps. Leveraging the established 

framework, this implementation considers the central aspects encompassing data 

preprocessing, training of the DGM and evaluation of the generated results. The development 

of the computational reasoning model as well as the further derivation of partial design models 

and an overall design will not be part of the scope of this particular implementation. 

Based on the idea of Macey [19] to classify vehicles according to their features using a 

classification map, this approach deals with the derivation of features from images. The used 

dataset consists of 1480 images depicting the side profiles of passenger cars from 37 distinct 

car brands in a resolution of 1024 x 1024 pixels [9]. This dataset is suitable because the 

pictured objects share a high degree of similarities and represent a true industrial design task 

as it is found in the real world when it comes to the design of early stage sideviews of cars. To 

provide a reasonable increase in the amount of used training data, the prototypical 

implementation uses adaptive discriminator augmentation to artificially expand the size of the 

dataset. 

6.1. Vehicle Shape Generation Model with StyleGAN2 

In order to build and train a model, the codebase of StyleGAN2 has been chosen. 

StyleGAN2 is an extension of StyleGAN, which has been published by Nvidia Corporation in 

2020 and has achieved state-of-the-art results in generating unconditional images using GANs 

[20]. The basic GAN configuration assumes the existence of a probability distribution 𝑝(𝑧) from 

which latent vectors 𝑧 ∈ 𝑍 are sampled. Through a neural network, the generator function 𝐺 is 

learned, which maps the latent vector to output, in this case, an image 𝐼 = 𝐺(𝑧). StyleGAN 

introduces a mapping network including another set of latent vectors 𝑤 and an additional latent 

space 𝑊, 𝑤 ∈ 𝑊 which is another mapping from the 𝑍 space that is more disentangled and 

offers the possibility to separate high-level attributes of images [21]. 

The training takes place on a virtual runtime hosted by Google Colab [22] with a Nvidia 

Tesla T4 GPU and comparatively on a local runtime with a single Nvidia V100 GPU using the 

same Python code. The training of the StyleGAN2 is complex as well as computationally and 

time intensive and is therefore investigated on the basis of the two different setups. Over the 

entire runtime, the cloud-based environment achieves ≈507 sec/kimg while the local 

environment performs ≈153 sec/kimg, where the unit kimg stands for 1,000 generated images. 

Depending on the respective size of the used dataset, an optimal model must have seen about 

25,000 kimg to reach convergence for an extensive dataset of e.g., 70,000 images [23]. 

Reasonable results are already achieved after approx. 5,000 kimg [24]. Therefore, the 

presented research is terminated after 5,000 kimg, resulting in a significant time advantage of 

≈8,9 days of training on the local runtime compared to ≈29,3 days of training on the hosted 

runtime. For larger models with even more training data, there is a correspondingly significant 

need for more powerful hardware. 

After the training, the trained model is able to generate images from a random seed (noise 

vector from the 𝑍 space distribution) which resemble the training dataset in style and motive 

and have the same resolution of 1024 x 1024 pixels. 

6.2. Principal Component Analysis with GANSpace 

In preparation for examining the generated latent space, the first step is to convert the file 

generated from TensorFlow (.pkl) into a PyTorch format (.pt). For this preprocessing step, the 

”SG2-ADA-PT to Ro        ” implementation is used for converting [25]. 
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Subsequently, a PCA is performed using the GANSpace implementation to find 

interpretable GAN controls [26]. The PCA processes the high-dimensional latent space of the 

remapped 𝑊 space and reduces its dimensionality allowing visualization. Therefore, the 

exploration of the intermediate result contributes significantly to the explainability and 

consequently to the acceptability of the selected approach. The number of resulting principal 

components is at most equal to the degree of dimensionality of the latent space [20, 27].  

A clustering of the principal components reveals that the associated images share similar 

features. Varying along such a principal component changes the manifestation of the 

corresponding feature on the image and forms the so-called feature vector 𝑤 [20]. This can 

concern single (distinctive) or multiple features at once [20]. Figure 3 shows two of the 24 

examined principal components. In this case, the generated principal components in 

descending order are causal for the intensity of the manifestation of the represented features. 

The first principal component apparently describes the driving direction of the vehicle as well 

as the background. The second represented principal component describes the vehicle’  

bodyshape and the color of the vehicle. Other identified features are for example the rims or 

the wheelbase of the vehicle. The complete interpretation of the identified features is still up to 

the individual and is complex and therefore prone to error, especially when interpreting multi-

feature principal components. In particular, multi-feature principal components represent an 

area of further research. Ideally, each principal component corresponds to exactly one 

identified feature. 

 
Figure 3: Varying two of the 24 examined principal components and the corresponding changes to the images 

The possibility to examine the latent space with the help of a PCA is a special aspect of the 

combined use of StyleGAN2 and GANSpace due to the harmonized architecture and therefore 

constitutes a particularly symbiotic application. 

7. Results & Discussion 

The results of this paper are divided into a conceptual part, an analytical part and an 

applicational part. In the conceptual part, a contribution was made by the clarification of the 

feature term in the feature-based product development as well as with the general taxonomy 

of DGMs. The framework describes a conceptual method to integrate the use of generative 

models into a process model according to VDI 2221 [8]. In the analytical part, a PCA was 

presented to explore the latent space of a previously trained StyleGAN2 implementation. As a 
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result of this exploration, the principal components were identified as characteristic properties 

of the images used for training, which can be specifically modified for the generation of new 

images by the generator. The result of this modification is a manipulable image that can be 

morphed from identified design parameters and used as the basis of partial design in the early 

stages of product development. 

Overall, the results demonstrate the general applicability of the proposed approach for the 

formulated purposes and for data-driven assistance systems of a developer. When analyzing 

the achieved quality of the images over the runtime, a fast increase with subsequently 

decreasing marginal returns is observed. A closer look at the generated images in Figure 4 

reveals some errors so-called anomalies. 

 
Figure 4: Four images generated by a random seed and the trained StyleGAN2 implementation 

Improvements in the quality of the generated images are not a subject of this study, but 

presumably could be realized by a larger training dataset, a longer runtime or more powerful 

hardware. 

8. Conclusion & Future Research 

The presented approaches offer the potential to open the black box characteristic of AI 

methods and significantly increase the explainability of the presented solution. The presented 

concept exemplifies a possible use of data-driven methods in product development in order to 

create a foundation for the exploration of novel applications. 

According to current research, the use of PCA is exclusively limited to BigGAN and 

StyleGAN based architectures, which is a restriction in the selection of further methods of 

generative models. Another restriction is the limitation of the generated solution within the 

solution space, which is defined by the training dataset. The generation of solutions outside 

the solution space remains the subject of future research. There is a further need for research 

in the integration of functions and in the consideration of additional constraints such as 

package space limitations as well as the detection and extrapolation of trends, for example, in 

the generation-spanning consideration of vehicle models. To address functions and other 

constraints, integrations between symbolic and sub-symbolic AI approaches should also be 

considered. Furthermore, time dependencies have to be included in order to incorporate 

planning processes. A focus on processing multi-feature principal components should be 

pursued in further work. 

A more in-depth evaluation with an industrial partner, which goes beyond the prototypical 

implementation, is still pending. The aim of this evaluation with an industry partner could be 

the development and use of a user interface with sliders for the identified feature vectors. Using 

the sliders would give the user the interactive opportunity to try different linear combinations of 

feature values and evaluate the created overlay of morphed design parameters immediately. 

Finally, the dependency of the quality of the generated images on technical factors such as 

the quantity of the training data, the used hardware and respectively the runtime requires 

further investigation. 
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